Nuprl Lemma : frs-non-dec-sorted-by

[p:ℝ List]. (frs-non-dec(p) ⇐⇒ sorted-by(λx,y. (x ≤ y);p))


Proof




Definitions occuring in Statement :  frs-non-dec: frs-non-dec(L) rleq: x ≤ y real: sorted-by: sorted-by(R;L) list: List uall: [x:A]. B[x] iff: ⇐⇒ Q lambda: λx.A[x]
Definitions unfolded in proof :  sorted-by: sorted-by(R;L) frs-non-dec: frs-non-dec(L) uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k guard: {T} decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: le: A ≤ B so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q sq_type: SQType(T) rleq: x ≤ y rnonneg: rnonneg(x) nat_plus: + subtype_rel: A ⊆B
Lemmas referenced :  rleq_weakening_equal list_wf nat_plus_wf nat_plus_properties rsub_wf less_than'_wf int_formula_prop_eq_lemma intformeq_wf int_subtype_base subtype_base_sq decidable__equal_int int_term_value_constant_lemma itermConstant_wf select_wf rleq_wf le_wf all_wf int_seg_wf int_formula_prop_le_lemma intformle_wf decidable__le lelt_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt real_wf length_wf int_seg_properties
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin setElimination rename dependent_set_memberEquality hypothesisEquality productElimination lemma_by_obid isectElimination natural_numberEquality unionElimination imageElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination because_Cache functionEquality instantiate cumulativity independent_pairEquality applyEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[p:\mBbbR{}  List].  (frs-non-dec(p)  \mLeftarrow{}{}\mRightarrow{}  sorted-by(\mlambda{}x,y.  (x  \mleq{}  y);p))



Date html generated: 2016_05_18-AM-08_53_24
Last ObjectModification: 2016_01_17-AM-02_32_24

Theory : reals


Home Index