Step
*
1
of Lemma
poly-approx-aux-property
.....basecase.....
1. k : ℤ
⊢ ∀[a:ℕ ⟶ ℝ]. ∀[x:ℝ]. ∀[xM:ℤ]. ∀[M:ℕ+]. ∀[n:ℕ].
((|x| ≤ (r1/r(4)))
⇒ 1-approx(x;M;xM)
⇒ 0 + 1-approx(Σ{(a (n + i)) * x^i | 0≤i≤0};M;poly-approx-aux(a;x;xM;M;n;0)))
BY
{ (RecUnfold `poly-approx-aux` 0 THEN Reduce 0 THEN Auto) }
1
1. k : ℤ
2. a : ℕ ⟶ ℝ
3. x : ℝ
4. xM : ℤ
5. M : ℕ+
6. n : ℕ
7. |x| ≤ (r1/r(4))
8. 1-approx(x;M;xM)
⊢ 1-approx(Σ{(a (n + i)) * x^i | 0≤i≤0};M;a n M)
Latex:
Latex:
.....basecase.....
1. k : \mBbbZ{}
\mvdash{} \mforall{}[a:\mBbbN{} {}\mrightarrow{} \mBbbR{}]. \mforall{}[x:\mBbbR{}]. \mforall{}[xM:\mBbbZ{}]. \mforall{}[M:\mBbbN{}\msupplus{}]. \mforall{}[n:\mBbbN{}].
((|x| \mleq{} (r1/r(4)))
{}\mRightarrow{} 1-approx(x;M;xM)
{}\mRightarrow{} 0 + 1-approx(\mSigma{}\{(a (n + i)) * x\^{}i | 0\mleq{}i\mleq{}0\};M;poly-approx-aux(a;x;xM;M;n;0)))
By
Latex:
(RecUnfold `poly-approx-aux` 0 THEN Reduce 0 THEN Auto)
Home
Index