Step
*
of Lemma
positive-lower-bound_wf
∀[x:{x:ℝ| r0 < x} ]. (positive-lower-bound(x) ∈ {k:ℕ+| (r1/r(k)) < x} )
BY
{ (Auto THEN (Assert TERMOF{small-reciprocal-real-ext:o, 1:l} x ∈ ∃k:ℕ+. ((r1/r(k)) < x) BY Auto)) }
1
1. x : {x:ℝ| r0 < x} 
2. TERMOF{small-reciprocal-real-ext:o, 1:l} x ∈ ∃k:ℕ+. ((r1/r(k)) < x)
⊢ positive-lower-bound(x) ∈ {k:ℕ+| (r1/r(k)) < x} 
Latex:
Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  <  x\}  ].  (positive-lower-bound(x)  \mmember{}  \{k:\mBbbN{}\msupplus{}|  (r1/r(k))  <  x\}  )
By
Latex:
(Auto  THEN  (Assert  TERMOF\{small-reciprocal-real-ext:o,  1:l\}  x  \mmember{}  \mexists{}k:\mBbbN{}\msupplus{}.  ((r1/r(k))  <  x)  BY  Auto))
Home
Index