Nuprl Lemma : positive-lower-bound_wf
∀[x:{x:ℝ| r0 < x} ]. (positive-lower-bound(x) ∈ {k:ℕ+| (r1/r(k)) < x} )
Proof
Definitions occuring in Statement :
positive-lower-bound: positive-lower-bound(x)
,
rdiv: (x/y)
,
rless: x < y
,
int-to-real: r(n)
,
real: ℝ
,
nat_plus: ℕ+
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
so_lambda: λ2x.t[x]
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
nat_plus: ℕ+
,
rless: x < y
,
sq_exists: ∃x:{A| B[x]}
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
top: Top
,
prop: ℙ
,
so_apply: x[s]
,
positive-lower-bound: positive-lower-bound(x)
,
pi1: fst(t)
,
small-reciprocal-real-ext,
has-value: (a)↓
,
real: ℝ
Lemmas referenced :
small-reciprocal-real-ext,
all_wf,
exists_wf,
rless_wf,
rdiv_wf,
rless-int,
nat_plus_properties,
decidable__lt,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
int-to-real_wf,
set_wf,
real_wf,
value-type-has-value,
set-value-type,
nat_plus_wf,
less_than_wf,
int-value-type,
rlessw_wf,
rneq-int,
intformeq_wf,
int_formula_prop_eq_lemma,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
applyEquality,
thin,
instantiate,
extract_by_obid,
hypothesis,
lambdaEquality,
sqequalHypSubstitution,
sqequalRule,
hypothesisEquality,
isectElimination,
because_Cache,
lambdaFormation,
setElimination,
rename,
independent_isectElimination,
inrFormation,
dependent_functionElimination,
productElimination,
independent_functionElimination,
unionElimination,
natural_numberEquality,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
dependent_set_memberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
callbyvalueReduce,
addEquality
Latex:
\mforall{}[x:\{x:\mBbbR{}| r0 < x\} ]. (positive-lower-bound(x) \mmember{} \{k:\mBbbN{}\msupplus{}| (r1/r(k)) < x\} )
Date html generated:
2016_10_26-AM-09_15_00
Last ObjectModification:
2016_10_12-PM-03_22_09
Theory : reals
Home
Index