Nuprl Lemma : positive-lower-bound_wf
∀[x:{x:ℝ| r0 < x} ]. (positive-lower-bound(x) ∈ {k:ℕ+| (r1/r(k)) < x} )
Proof
Definitions occuring in Statement : 
positive-lower-bound: positive-lower-bound(x)
, 
rdiv: (x/y)
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
nat_plus: ℕ+
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
positive-lower-bound: positive-lower-bound(x)
, 
pi1: fst(t)
, 
small-reciprocal-real-ext, 
has-value: (a)↓
, 
real: ℝ
Lemmas referenced : 
small-reciprocal-real-ext, 
all_wf, 
exists_wf, 
rless_wf, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
int-to-real_wf, 
set_wf, 
real_wf, 
value-type-has-value, 
set-value-type, 
nat_plus_wf, 
less_than_wf, 
int-value-type, 
rlessw_wf, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
lambdaEquality, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
because_Cache, 
lambdaFormation, 
setElimination, 
rename, 
independent_isectElimination, 
inrFormation, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
callbyvalueReduce, 
addEquality
Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  <  x\}  ].  (positive-lower-bound(x)  \mmember{}  \{k:\mBbbN{}\msupplus{}|  (r1/r(k))  <  x\}  )
Date html generated:
2016_10_26-AM-09_15_00
Last ObjectModification:
2016_10_12-PM-03_22_09
Theory : reals
Home
Index