Step
*
1
1
of Lemma
power-series-converges-everywhere-to
.....assertion.....
1. a : ℕ ⟶ ℝ
2. b : ℝ
3. ∀r:{r:ℝ| r0 < r} . ∀N:ℕ.
((∀n:{N...}. (|a[n + 1]| ≤ (|a[n]|/r)))
⇒ (∀g:(b - r, b + r) ⟶ℝ
((∀x:{x:ℝ| x ∈ (b - r, b + r)} . Σi.a[i] * x - b^i = g[x])
⇒ lim n→∞.Σ{a[i] * x - b^i | 0≤i≤n} = λx.g[x] for x ∈ (b - r, b + r))))
4. g : ℝ ⟶ ℝ
5. ∀x:ℝ. Σi.a[i] * x - b^i = g[x]
6. ∀r:{r:ℝ| r0 < r} . ∃N:ℕ. ∀n:{N...}. (|a[n + 1]| ≤ (|a[n]|/r))
7. m : {m:ℕ+| icompact([r(-m), r(m)])}
⊢ ∃r:{r:ℝ| r0 < r} . [r(-m), r(m)] ⊆ (b - r, b + r)
BY
{ (D 0 With ⌜rmax(b + r(m + 1);r(m + 1) - b)⌝ THEN Auto) }
1
.....wf.....
1. a : ℕ ⟶ ℝ
2. b : ℝ
3. ∀r:{r:ℝ| r0 < r} . ∀N:ℕ.
((∀n:{N...}. (|a[n + 1]| ≤ (|a[n]|/r)))
⇒ (∀g:(b - r, b + r) ⟶ℝ
((∀x:{x:ℝ| x ∈ (b - r, b + r)} . Σi.a[i] * x - b^i = g[x])
⇒ lim n→∞.Σ{a[i] * x - b^i | 0≤i≤n} = λx.g[x] for x ∈ (b - r, b + r))))
4. g : ℝ ⟶ ℝ
5. ∀x:ℝ. Σi.a[i] * x - b^i = g[x]
6. ∀r:{r:ℝ| r0 < r} . ∃N:ℕ. ∀n:{N...}. (|a[n + 1]| ≤ (|a[n]|/r))
7. m : {m:ℕ+| icompact([r(-m), r(m)])}
⊢ rmax(b + r(m + 1);r(m + 1) - b) ∈ {r:ℝ| r0 < r}
2
1. a : ℕ ⟶ ℝ
2. b : ℝ
3. ∀r:{r:ℝ| r0 < r} . ∀N:ℕ.
((∀n:{N...}. (|a[n + 1]| ≤ (|a[n]|/r)))
⇒ (∀g:(b - r, b + r) ⟶ℝ
((∀x:{x:ℝ| x ∈ (b - r, b + r)} . Σi.a[i] * x - b^i = g[x])
⇒ lim n→∞.Σ{a[i] * x - b^i | 0≤i≤n} = λx.g[x] for x ∈ (b - r, b + r))))
4. g : ℝ ⟶ ℝ
5. ∀x:ℝ. Σi.a[i] * x - b^i = g[x]
6. ∀r:{r:ℝ| r0 < r} . ∃N:ℕ. ∀n:{N...}. (|a[n + 1]| ≤ (|a[n]|/r))
7. m : {m:ℕ+| icompact([r(-m), r(m)])}
⊢ [r(-m), r(m)] ⊆ (b - rmax(b + r(m + 1);r(m + 1) - b), b + rmax(b + r(m + 1);r(m + 1) - b))
Latex:
Latex:
.....assertion.....
1. a : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. b : \mBbbR{}
3. \mforall{}r:\{r:\mBbbR{}| r0 < r\} . \mforall{}N:\mBbbN{}.
((\mforall{}n:\{N...\}. (|a[n + 1]| \mleq{} (|a[n]|/r)))
{}\mRightarrow{} (\mforall{}g:(b - r, b + r) {}\mrightarrow{}\mBbbR{}
((\mforall{}x:\{x:\mBbbR{}| x \mmember{} (b - r, b + r)\} . \mSigma{}i.a[i] * x - b\^{}i = g[x])
{}\mRightarrow{} lim n\mrightarrow{}\minfty{}.\mSigma{}\{a[i] * x - b\^{}i | 0\mleq{}i\mleq{}n\} = \mlambda{}x.g[x] for x \mmember{} (b - r, b + r))))
4. g : \mBbbR{} {}\mrightarrow{} \mBbbR{}
5. \mforall{}x:\mBbbR{}. \mSigma{}i.a[i] * x - b\^{}i = g[x]
6. \mforall{}r:\{r:\mBbbR{}| r0 < r\} . \mexists{}N:\mBbbN{}. \mforall{}n:\{N...\}. (|a[n + 1]| \mleq{} (|a[n]|/r))
7. m : \{m:\mBbbN{}\msupplus{}| icompact([r(-m), r(m)])\}
\mvdash{} \mexists{}r:\{r:\mBbbR{}| r0 < r\} . [r(-m), r(m)] \msubseteq{} (b - r, b + r)
By
Latex:
(D 0 With \mkleeneopen{}rmax(b + r(m + 1);r(m + 1) - b)\mkleeneclose{} THEN Auto)
Home
Index