Step
*
1
1
of Lemma
prod-metric-space-complete
1. k : ℕ
2. X : ℕk ⟶ MetricSpace
3. ∀i:ℕk. mcomplete(X i)
4. prod-metric(k;λi.(snd((X i)))) ∈ metric(i:ℕk ⟶ (fst((X i))))
5. x : ℕ ⟶ i:ℕk ⟶ (fst((X i)))
6. mcauchy(prod-metric(k;λi.(snd((X i))));n.x n)
7. ∀i:ℕk. mcauchy(snd((X i));n.x n i)
⊢ x n↓ as n→∞
BY
{ (Assert ∀i:ℕk. x n i↓ as n→∞ BY
(ParallelOp 3
THEN (D -3 With ⌜i⌝ THENA Auto)
THEN (Subst' X i ~ <fst((X i)), snd((X i))> -2 THENA ((GenConclTerm ⌜X i⌝⋅ THENA Auto) THEN D -2 THEN Reduce 0\000C THEN Auto))
THEN RepUR ``mcomplete`` -2
THEN D -2 With ⌜λn.(x n i)⌝
THEN Auto)) }
1
1. k : ℕ
2. X : ℕk ⟶ MetricSpace
3. ∀i:ℕk. mcomplete(X i)
4. prod-metric(k;λi.(snd((X i)))) ∈ metric(i:ℕk ⟶ (fst((X i))))
5. x : ℕ ⟶ i:ℕk ⟶ (fst((X i)))
6. mcauchy(prod-metric(k;λi.(snd((X i))));n.x n)
7. ∀i:ℕk. mcauchy(snd((X i));n.x n i)
8. ∀i:ℕk. x n i↓ as n→∞
⊢ x n↓ as n→∞
Latex:
Latex:
1. k : \mBbbN{}
2. X : \mBbbN{}k {}\mrightarrow{} MetricSpace
3. \mforall{}i:\mBbbN{}k. mcomplete(X i)
4. prod-metric(k;\mlambda{}i.(snd((X i)))) \mmember{} metric(i:\mBbbN{}k {}\mrightarrow{} (fst((X i))))
5. x : \mBbbN{} {}\mrightarrow{} i:\mBbbN{}k {}\mrightarrow{} (fst((X i)))
6. mcauchy(prod-metric(k;\mlambda{}i.(snd((X i))));n.x n)
7. \mforall{}i:\mBbbN{}k. mcauchy(snd((X i));n.x n i)
\mvdash{} x n\mdownarrow{} as n\mrightarrow{}\minfty{}
By
Latex:
(Assert \mforall{}i:\mBbbN{}k. x n i\mdownarrow{} as n\mrightarrow{}\minfty{} BY
(ParallelOp 3
THEN (D -3 With \mkleeneopen{}i\mkleeneclose{} THENA Auto)
THEN (Subst' X i \msim{} <fst((X i)), snd((X i))> -2
THENA ((GenConclTerm \mkleeneopen{}X i\mkleeneclose{}\mcdot{} THENA Auto) THEN D -2 THEN Reduce 0 THEN Auto)
)
THEN RepUR ``mcomplete`` -2
THEN D -2 With \mkleeneopen{}\mlambda{}n.(x n i)\mkleeneclose{}
THEN Auto))
Home
Index