Nuprl Lemma : pseudo-positive-iff
∀x:ℝ. ((r0 ≤ x) ⇒ (pseudo-positive(x) ⇐⇒ ∀y:ℝ. ((¬(x = y)) ∨ (¬(y = r0)))))
Proof
Definitions occuring in Statement : 
pseudo-positive: pseudo-positive(x), 
rleq: x ≤ y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
not: ¬A, 
false: False, 
pseudo-positive: pseudo-positive(x), 
guard: {T}, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
cand: A c∧ B, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top
Latex:
\mforall{}x:\mBbbR{}.  ((r0  \mleq{}  x)  {}\mRightarrow{}  (pseudo-positive(x)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}y:\mBbbR{}.  ((\mneg{}(x  =  y))  \mvee{}  (\mneg{}(y  =  r0)))))
Date html generated:
2020_05_20-AM-11_09_14
Last ObjectModification:
2020_01_09-PM-04_35_54
Theory : reals
Home
Index