Step
*
1
2
1
of Lemma
r2-left-extend
1. a : ℝ^2
2. b : ℝ^2
3. x : ℝ^2
4. y : ℝ^2
5. r0 < |xab|
6. (¬b ≠ y)
⇒ (¬x ≠ y)
7. b ≠ y
8. t : ℝ
9. r0 ≤ t
10. t ≤ r1
11. req-vec(2;x;t*b + r1 - t*y)
12. |xab| = ((r1 - t) * |yab|)
13. (r0 < (r1 - t)) ∧ (r0 < |yab|)
⊢ |xab| ≤ |yab|
BY
{ D -1 }
1
1. a : ℝ^2
2. b : ℝ^2
3. x : ℝ^2
4. y : ℝ^2
5. r0 < |xab|
6. (¬b ≠ y)
⇒ (¬x ≠ y)
7. b ≠ y
8. t : ℝ
9. r0 ≤ t
10. t ≤ r1
11. req-vec(2;x;t*b + r1 - t*y)
12. |xab| = ((r1 - t) * |yab|)
13. r0 < (r1 - t)
14. r0 < |yab|
⊢ |xab| ≤ |yab|
Latex:
Latex:
1. a : \mBbbR{}\^{}2
2. b : \mBbbR{}\^{}2
3. x : \mBbbR{}\^{}2
4. y : \mBbbR{}\^{}2
5. r0 < |xab|
6. (\mneg{}b \mneq{} y) {}\mRightarrow{} (\mneg{}x \mneq{} y)
7. b \mneq{} y
8. t : \mBbbR{}
9. r0 \mleq{} t
10. t \mleq{} r1
11. req-vec(2;x;t*b + r1 - t*y)
12. |xab| = ((r1 - t) * |yab|)
13. (r0 < (r1 - t)) \mwedge{} (r0 < |yab|)
\mvdash{} |xab| \mleq{} |yab|
By
Latex:
D -1
Home
Index