Nuprl Lemma : rabs-abs

[a:ℤ]. (|r(a)| r(|a|))


Proof




Definitions occuring in Statement :  rabs: |x| req: y int-to-real: r(n) absval: |i| uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: subtype_rel: A ⊆B true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q nat:
Lemmas referenced :  nat_wf rabs_wf req_witness req_weakening iff_weakening_equal absval_wf int-to-real_wf rabs-int real_wf true_wf squash_wf req_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination lemma_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache sqequalRule natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination setElimination rename intEquality

Latex:
\mforall{}[a:\mBbbZ{}].  (|r(a)|  =  r(|a|))



Date html generated: 2016_05_18-AM-07_14_02
Last ObjectModification: 2016_01_17-AM-01_53_33

Theory : reals


Home Index