Nuprl Lemma : rabs-rless-iff
∀x,z:ℝ.  (|x| < z ⇐⇒ (-(z) < x) ∧ (x < z))
Proof
Definitions occuring in Statement : 
rless: x < y, 
rabs: |x|, 
rminus: -(x), 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
and: P ∧ Q, 
rsub: x - y, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
rev_implies: P ⇐ Q
Lemmas referenced : 
rabs-difference-bound-iff, 
int-to-real_wf, 
real_wf, 
rabs_wf, 
radd_wf, 
rminus_wf, 
rless_wf, 
rless_functionality, 
rabs_functionality, 
radd_functionality, 
rminus-zero, 
req_weakening, 
radd_comm, 
radd-zero-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
productEquality, 
sqequalRule, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
independent_isectElimination, 
promote_hyp
Latex:
\mforall{}x,z:\mBbbR{}.    (|x|  <  z  \mLeftarrow{}{}\mRightarrow{}  (-(z)  <  x)  \mwedge{}  (x  <  z))
Date html generated:
2016_10_26-AM-09_10_23
Last ObjectModification:
2016_09_01-PM-01_37_12
Theory : reals
Home
Index