Nuprl Lemma : rat_term_polynomial
∀r:rat_term(). let p,q = rat_term_to_ipolys(r) in r ≡ ipolynomial-term(p)/ipolynomial-term(q)
Proof
Definitions occuring in Statement : 
req_rat_term: r ≡ p/q, 
rat_term_to_ipolys: rat_term_to_ipolys(t), 
rat_term: rat_term(), 
ipolynomial-term: ipolynomial-term(p), 
all: ∀x:A. B[x], 
spread: spread def
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iPolynomial: iPolynomial(), 
so_apply: x[s], 
rat_term_to_ipolys: rat_term_to_ipolys(t), 
rat_term_ind: rat_term_ind, 
rtermConstant: "const", 
rtermVar: rtermVar(var), 
rtermAdd: left "+" right, 
req_rat_term: r ≡ p/q, 
rat_term_to_real: rat_term_to_real(f;t), 
and: P ∧ Q, 
cand: A c∧ B, 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
rtermSubtract: left "-" right, 
rtermMultiply: left "*" right, 
rtermDivide: num "/" denom, 
rtermMinus: rtermMinus(num), 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
sq_type: SQType(T), 
ipolynomial-term: ipolynomial-term(p), 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
imonomial-term: imonomial-term(m), 
rneq: x ≠ y, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
false: False, 
not: ¬A, 
rdiv: (x/y), 
req_int_terms: t1 ≡ t2, 
real_term_value: real_term_value(f;t), 
itermAdd: left (+) right, 
int_term_ind: int_term_ind, 
itermMultiply: left (*) right, 
itermMinus: "-"num, 
exists: ∃x:A. B[x], 
istype: istype(T)
Latex:
\mforall{}r:rat\_term().  let  p,q  =  rat\_term\_to\_ipolys(r)  in  r  \mequiv{}  ipolynomial-term(p)/ipolynomial-term(q)
Date html generated:
2020_05_20-AM-10_59_50
Last ObjectModification:
2020_01_06-PM-00_28_23
Theory : reals
Home
Index