Nuprl Lemma : rat_term_wf
rat_term() ∈ Type
Proof
Definitions occuring in Statement : 
rat_term: rat_term()
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
rat_term: rat_term()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
rat_termco_wf, 
has-value_wf-partial, 
nat_wf, 
set-value-type, 
le_wf, 
istype-int, 
int-value-type, 
rat_termco_size_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
setEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
independent_isectElimination, 
intEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
hypothesisEquality
Latex:
rat\_term()  \mmember{}  Type
Date html generated:
2019_10_29-AM-09_25_17
Last ObjectModification:
2019_03_31-PM-05_24_00
Theory : reals
Home
Index