Step
*
1
of Lemma
ratio-test-corollary
1. x : ℕ ⟶ ℝ@i
2. ∀N:ℕ
((∀c:{c:ℝ| (r0 ≤ c) ∧ (c < r1)} . ((∀n:{N...}. (|x[n + 1]| ≤ (c * |x[n]|)))
⇒ Σn.x[n]↓))
∧ (∀c:{c:ℝ| r1 < c} . ((∀n:{N...}. ((c * |x[n]|) < |x[n + 1]|))
⇒ Σn.x[n]↑)))
3. ∀n:ℕ. x[n] ≠ r0
4. L : ℝ@i
5. lim n→∞.|(x[n + 1]/x[n])| = L
6. L < r1
⊢ Σn.x[n]↓
BY
{ ((InstLemma `small-reciprocal-real` [⌜r1 - L⌝]⋅ THENA (Auto THEN MemTypeCD THEN Auto THEN nRAdd ⌜L⌝ 0⋅ THEN Auto))
THEN ExRepD
) }
1
1. x : ℕ ⟶ ℝ@i
2. ∀N:ℕ
((∀c:{c:ℝ| (r0 ≤ c) ∧ (c < r1)} . ((∀n:{N...}. (|x[n + 1]| ≤ (c * |x[n]|)))
⇒ Σn.x[n]↓))
∧ (∀c:{c:ℝ| r1 < c} . ((∀n:{N...}. ((c * |x[n]|) < |x[n + 1]|))
⇒ Σn.x[n]↑)))
3. ∀n:ℕ. x[n] ≠ r0
4. L : ℝ@i
5. lim n→∞.|(x[n + 1]/x[n])| = L
6. L < r1
7. k : ℕ+
8. (r1/r(k)) < (r1 - L)
⊢ Σn.x[n]↓
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}@i
2. \mforall{}N:\mBbbN{}
((\mforall{}c:\{c:\mBbbR{}| (r0 \mleq{} c) \mwedge{} (c < r1)\} . ((\mforall{}n:\{N...\}. (|x[n + 1]| \mleq{} (c * |x[n]|))) {}\mRightarrow{} \mSigma{}n.x[n]\mdownarrow{}))
\mwedge{} (\mforall{}c:\{c:\mBbbR{}| r1 < c\} . ((\mforall{}n:\{N...\}. ((c * |x[n]|) < |x[n + 1]|)) {}\mRightarrow{} \mSigma{}n.x[n]\muparrow{})))
3. \mforall{}n:\mBbbN{}. x[n] \mneq{} r0
4. L : \mBbbR{}@i
5. lim n\mrightarrow{}\minfty{}.|(x[n + 1]/x[n])| = L
6. L < r1
\mvdash{} \mSigma{}n.x[n]\mdownarrow{}
By
Latex:
((InstLemma `small-reciprocal-real` [\mkleeneopen{}r1 - L\mkleeneclose{}]\mcdot{}
THENA (Auto THEN MemTypeCD THEN Auto THEN nRAdd \mkleeneopen{}L\mkleeneclose{} 0\mcdot{} THEN Auto)
)
THEN ExRepD
)
Home
Index