Nuprl Lemma : ratio-test-corollary
∀x:ℕ ⟶ ℝ
  ((∀n:ℕ. x[n] ≠ r0) 
⇒ (∀L:ℝ. (lim n→∞.|(x[n + 1]/x[n])| = L 
⇒ (((L < r1) 
⇒ Σn.x[n]↓) ∧ ((r1 < L) 
⇒ Σn.x[n]↑)))))
Proof
Definitions occuring in Statement : 
series-diverges: Σn.x[n]↑
, 
series-converges: Σn.x[n]↓
, 
converges-to: lim n→∞.x[n] = y
, 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
rless: x < y
, 
rabs: |x|
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
rneq: x ≠ y
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
rdiv: (x/y)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
converges-to: lim n→∞.x[n] = y
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
int_upper: {i...}
, 
itermConstant: "const"
, 
true: True
, 
less_than': less_than'(a;b)
, 
subtract: n - m
Lemmas referenced : 
ratio-test-ext, 
rless_wf, 
int-to-real_wf, 
converges-to_wf, 
rabs_wf, 
rdiv_wf, 
nat_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
real_wf, 
all_wf, 
rneq_wf, 
small-reciprocal-real, 
rless-implies-rless, 
rsub_wf, 
itermSubtract_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
zero-rleq-rabs, 
sq_stable__less_than, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformless_wf, 
int_formula_prop_less_lemma, 
constant-rleq-limit, 
radd-preserves-rless, 
radd_wf, 
rmul_wf, 
rinv_wf2, 
itermMultiply_wf, 
rless_functionality, 
req_transitivity, 
radd_functionality, 
req_weakening, 
rinv-as-rdiv, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
trivial-rleq-radd, 
rleq-int-fractions2, 
int_term_value_mul_lemma, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
sq_stable__all, 
rleq_wf, 
sq_stable__rleq, 
less_than'_wf, 
nat_plus_wf, 
squash_wf, 
int_upper_wf, 
upper_subtype_nat, 
sq_stable__le, 
int_upper_properties, 
rpositive-rless, 
rabs-positive, 
rabs-difference-bound-rleq, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
rabs-rdiv, 
rmul_preserves_rleq2, 
rleq_weakening_rless, 
equal_wf, 
rmul_comm, 
rleq-implies-rleq, 
rmul_functionality, 
radd_comm, 
rmul-rinv3, 
real_term_polynomial, 
less_than_wf, 
le-add-cancel, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
less-iff-le, 
not-lt-2, 
false_wf, 
int_upper_subtype_nat, 
rless-int-fractions, 
rminus_wf, 
itermMinus_wf, 
real_term_value_minus_lemma, 
rmul_preserves_rless, 
rless_transitivity2, 
radd-preserves-rleq
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
functionEquality, 
productElimination, 
inrFormation, 
computeAll, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
multiplyEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairEquality, 
minusEquality, 
axiomEquality, 
productEquality, 
isect_memberFormation
Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}
    ((\mforall{}n:\mBbbN{}.  x[n]  \mneq{}  r0)
    {}\mRightarrow{}  (\mforall{}L:\mBbbR{}.  (lim  n\mrightarrow{}\minfty{}.|(x[n  +  1]/x[n])|  =  L  {}\mRightarrow{}  (((L  <  r1)  {}\mRightarrow{}  \mSigma{}n.x[n]\mdownarrow{})  \mwedge{}  ((r1  <  L)  {}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{})))))
Date html generated:
2019_10_29-AM-10_27_03
Last ObjectModification:
2018_08_23-AM-11_25_24
Theory : reals
Home
Index