Nuprl Lemma : rabs-rdiv

x,y:ℝ.  (y ≠ r0  (|(x/y)| (|x|/|y|)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y rabs: |x| req: y int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  rdiv: (x/y) all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rneq: x ≠ y guard: {T} or: P ∨ Q uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rabs-neq-zero rneq_wf int-to-real_wf real_wf rabs_wf rmul_wf rinv_wf2 rless_wf req_weakening req_functionality req_transitivity rabs-rmul rmul_functionality rabs-rinv
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis isectElimination natural_numberEquality inrFormation because_Cache independent_isectElimination productElimination

Latex:
\mforall{}x,y:\mBbbR{}.    (y  \mneq{}  r0  {}\mRightarrow{}  (|(x/y)|  =  (|x|/|y|)))



Date html generated: 2016_05_18-AM-07_26_56
Last ObjectModification: 2015_12_28-AM-00_50_22

Theory : reals


Home Index