Nuprl Lemma : rabs-rdiv
∀x,y:ℝ.  (y ≠ r0 
⇒ (|(x/y)| = (|x|/|y|)))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
rabs: |x|
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
rdiv: (x/y)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rabs-neq-zero, 
rneq_wf, 
int-to-real_wf, 
real_wf, 
rabs_wf, 
rmul_wf, 
rinv_wf2, 
rless_wf, 
req_weakening, 
req_functionality, 
req_transitivity, 
rabs-rmul, 
rmul_functionality, 
rabs-rinv
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
natural_numberEquality, 
inrFormation, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}x,y:\mBbbR{}.    (y  \mneq{}  r0  {}\mRightarrow{}  (|(x/y)|  =  (|x|/|y|)))
Date html generated:
2016_05_18-AM-07_26_56
Last ObjectModification:
2015_12_28-AM-00_50_22
Theory : reals
Home
Index