Nuprl Lemma : rabs-rinv

y:ℝ(y ≠ r0  (|rinv(y)| rinv(|y|)))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rabs: |x| rinv: rinv(x) req: y int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T rneq: x ≠ y or: P ∨ Q prop: uall: [x:A]. B[x] uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) and: P ∧ Q guard: {T} rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  rabs-neq-zero rneq_wf int-to-real_wf real_wf rless-implies-rless rminus_wf real_term_polynomial itermSubtract_wf itermConstant_wf itermVar_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 rsub_wf rless_wf rabs-of-nonpos rleq_weakening_rless rabs_wf rinv_wf2 req_functionality req_weakening rinv_functionality2 rmul_reverses_rleq_iff rmul_wf rleq-int false_wf rleq_functionality itermMultiply_wf real_term_value_mul_lemma req_transitivity rmul-rinv rmul_preserves_req rabs-of-nonneg rmul_preserves_rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis addLevel unionElimination levelHypothesis isectElimination natural_numberEquality inrFormation because_Cache independent_isectElimination sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productElimination independent_pairFormation

Latex:
\mforall{}y:\mBbbR{}.  (y  \mneq{}  r0  {}\mRightarrow{}  (|rinv(y)|  =  rinv(|y|)))



Date html generated: 2017_10_03-AM-08_37_35
Last ObjectModification: 2017_07_28-AM-07_30_14

Theory : reals


Home Index