Nuprl Lemma : rmul_reverses_rleq_iff
∀[x,y,z:ℝ].  uiff(x ≤ z;(z * y) ≤ (x * y)) supposing y < r0
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rless: x < y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
guard: {T}
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
rdiv: (x/y)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
label: ...$L... t
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
top: Top
Lemmas referenced : 
less_than'_wf, 
rsub_wf, 
rmul_wf, 
real_wf, 
nat_plus_wf, 
rleq_wf, 
rless_wf, 
int-to-real_wf, 
rmul_reverses_rleq, 
rdiv_wf, 
rinv-negative, 
rleq_functionality_wrt_implies, 
rinv_wf2, 
rleq_weakening_rless, 
rless-implies-rless, 
real_term_polynomial, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
itermMultiply_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
req-iff-rsub-is-0, 
rleq_weakening_equal, 
rleq_weakening, 
req_wf, 
req_weakening, 
uiff_transitivity, 
rleq_functionality, 
req_functionality, 
req_inversion, 
rmul-assoc, 
rmul_functionality, 
rmul_comm, 
req_transitivity, 
rmul-ac, 
rmul-rdiv-cancel, 
rmul-one-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
isect_memberEquality, 
independent_isectElimination, 
lemma_by_obid, 
inlFormation, 
independent_functionElimination, 
computeAll, 
int_eqEquality, 
intEquality, 
voidEquality
Latex:
\mforall{}[x,y,z:\mBbbR{}].    uiff(x  \mleq{}  z;(z  *  y)  \mleq{}  (x  *  y))  supposing  y  <  r0
Date html generated:
2017_10_03-AM-08_35_00
Last ObjectModification:
2017_07_28-AM-07_28_45
Theory : reals
Home
Index