Nuprl Lemma : rless-implies-rless
∀a,b:ℝ.  ∀[c,d:ℝ].  (a < b) supposing ((c < d) and ((d - c) = (b - a)))
Proof
Definitions occuring in Statement : 
rless: x < y
, 
rsub: x - y
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
prop: ℙ
, 
rsub: x - y
, 
guard: {T}
Lemmas referenced : 
req_witness, 
rsub_wf, 
sq_stable__rless, 
radd-preserves-rless, 
rminus_wf, 
radd-rminus-both, 
rless_wf, 
req_wf, 
real_wf, 
radd_wf, 
int-to-real_wf, 
rless_functionality, 
req_weakening, 
radd_comm, 
req_inversion, 
rless_transitivity1, 
rleq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
rename, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
natural_numberEquality, 
independent_isectElimination
Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}[c,d:\mBbbR{}].    (a  <  b)  supposing  ((c  <  d)  and  ((d  -  c)  =  (b  -  a)))
Date html generated:
2017_10_03-AM-08_25_32
Last ObjectModification:
2017_04_04-PM-02_18_41
Theory : reals
Home
Index