Nuprl Lemma : rmul_reverses_rleq

[x,y,z:ℝ].  ((z y) ≤ (x y)) supposing ((y ≤ r0) and (x ≤ z))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmul: b int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top uiff: uiff(P;Q)
Lemmas referenced :  less_than'_wf rsub_wf rmul_wf real_wf nat_plus_wf rleq_wf int-to-real_wf rminus-reverses-rleq rminus_wf rleq_functionality real_term_polynomial itermSubtract_wf itermMinus_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_minus_lemma req-iff-rsub-is-0 req_transitivity itermVar_wf itermMultiply_wf real_term_value_var_lemma real_term_value_mul_lemma req_inversion rminus-as-rmul rmul_functionality_wrt_rleq rleq-implies-rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination independent_isectElimination computeAll intEquality voidEquality int_eqEquality

Latex:
\mforall{}[x,y,z:\mBbbR{}].    ((z  *  y)  \mleq{}  (x  *  y))  supposing  ((y  \mleq{}  r0)  and  (x  \mleq{}  z))



Date html generated: 2017_10_03-AM-08_28_11
Last ObjectModification: 2017_07_28-AM-07_25_05

Theory : reals


Home Index