Nuprl Lemma : rabs-neq-zero

x:ℝ(x ≠ r0  (r0 < |x|))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rless: x < y rabs: |x| int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y or: P ∨ Q rless: x < y sq_exists: x:{A| B[x]} member: t ∈ T int-to-real: r(n) rabs: |x| uall: [x:A]. B[x] real: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: nat_plus: + satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b decidable: Dec(P) subtype_rel: A ⊆B
Lemmas referenced :  absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf itermMultiply_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot decidable__lt add-is-int-iff intformnot_wf itermMinus_wf int_formula_prop_not_lemma int_term_value_minus_lemma false_wf int-to-real_wf real_wf rabs_wf rneq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution unionElimination thin setElimination rename introduction dependent_set_memberEquality hypothesisEquality sqequalRule cut extract_by_obid isectElimination applyEquality hypothesis minusEquality natural_numberEquality because_Cache equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination computeAll promote_hyp instantiate cumulativity addEquality multiplyEquality pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  {}\mRightarrow{}  (r0  <  |x|))



Date html generated: 2017_10_03-AM-08_28_25
Last ObjectModification: 2017_07_28-AM-07_25_13

Theory : reals


Home Index