Nuprl Lemma : rabs-of-nonpos

[x:ℝ]. |x| -(x) supposing x ≤ r0


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| req: y rminus: -(x) int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a top: Top uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] itermConstant: "const" req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A prop: guard: {T}
Lemmas referenced :  rabs-as-rmax rmax-req rminus_wf radd-preserves-rleq rleq_functionality radd_wf rmul_wf int-to-real_wf real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf itermMultiply_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_mul_lemma req-iff-rsub-is-0 itermMinus_wf real_term_value_minus_lemma req_witness rabs_wf rleq_wf real_wf rleq_transitivity req_transitivity rmul-identity1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality independent_isectElimination because_Cache productElimination natural_numberEquality dependent_functionElimination computeAll lambdaEquality int_eqEquality intEquality independent_functionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:\mBbbR{}].  |x|  =  -(x)  supposing  x  \mleq{}  r0



Date html generated: 2017_10_03-AM-08_30_52
Last ObjectModification: 2017_07_28-AM-07_26_49

Theory : reals


Home Index