Nuprl Lemma : constant-rleq-limit
∀[x:ℝ]. ∀[y:ℕ ⟶ ℝ]. ∀[a:ℝ].  (x ≤ a) supposing ((∀n:ℕ. (x ≤ y[n])) and lim n→∞.y[n] = a)
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
rleq: x ≤ y
, 
real: ℝ
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
Lemmas referenced : 
rleq-limit, 
nat_wf, 
constant-limit, 
req_weakening, 
less_than'_wf, 
rsub_wf, 
real_wf, 
nat_plus_wf, 
all_wf, 
rleq_wf, 
converges-to_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
independent_pairEquality, 
applyEquality, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
voidElimination
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[a:\mBbbR{}].    (x  \mleq{}  a)  supposing  ((\mforall{}n:\mBbbN{}.  (x  \mleq{}  y[n]))  and  lim  n\mrightarrow{}\minfty{}.y[n]  =  a)
Date html generated:
2016_05_18-AM-07_53_14
Last ObjectModification:
2015_12_28-AM-01_07_06
Theory : reals
Home
Index