Nuprl Lemma : constant-limit
∀a,b:ℝ.  (lim n→∞.a = b 
⇐⇒ a = b)
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
req: x = y
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
converges-to: lim n→∞.x[n] = y
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
sq_stable: SqStable(P)
, 
top: Top
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
sq_exists: ∃x:{A| B[x]}
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
, 
absval: |i|
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
rdiv: (x/y)
Lemmas referenced : 
converges-to_wf, 
nat_wf, 
nat_plus_wf, 
req_wf, 
real_wf, 
false_wf, 
le_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_properties, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
absval_wf, 
rinv_wf2, 
rmul_wf, 
rleq-int-fractions2, 
decidable__le, 
intformle_wf, 
itermMultiply_wf, 
int_formula_prop_le_lemma, 
int_term_value_mul_lemma, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
req_weakening, 
uiff_transitivity2, 
real_term_polynomial, 
itermSubtract_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
req_transitivity, 
real_term_value_mul_lemma, 
rinv-as-rdiv, 
squash_wf, 
true_wf, 
rabs-int, 
infinitesmal-difference, 
sq_stable__all, 
sq_stable__rleq, 
less_than'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
minusEquality, 
applyEquality, 
independent_pairEquality, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
independent_functionElimination, 
because_Cache, 
inrFormation, 
natural_numberEquality, 
functionEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
isect_memberFormation, 
independent_isectElimination, 
productElimination, 
lemma_by_obid, 
dependent_set_memberFormation, 
dependent_set_memberEquality, 
multiplyEquality
Latex:
\mforall{}a,b:\mBbbR{}.    (lim  n\mrightarrow{}\minfty{}.a  =  b  \mLeftarrow{}{}\mRightarrow{}  a  =  b)
Date html generated:
2017_10_03-AM-09_05_04
Last ObjectModification:
2017_07_28-AM-07_41_19
Theory : reals
Home
Index