Nuprl Lemma : constant-limit

a,b:ℝ.  (lim n→∞.a ⇐⇒ b)


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y req: y real: all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q converges-to: lim n→∞.x[n] y member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q squash: T subtype_rel: A ⊆B le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y sq_stable: SqStable(P) top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) ge: i ≥  or: P ∨ Q guard: {T} rneq: x ≠ y nat_plus: + nat: sq_exists: x:{A| B[x]} uimplies: supposing a uiff: uiff(P;Q) less_than': less_than'(a;b) true: True rev_uimplies: rev_uimplies(P;Q) absval: |i| itermConstant: "const" req_int_terms: t1 ≡ t2 rdiv: (x/y)
Lemmas referenced :  converges-to_wf nat_wf nat_plus_wf req_wf real_wf false_wf le_wf all_wf rleq_wf rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_properties nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf absval_wf rinv_wf2 rmul_wf rleq-int-fractions2 decidable__le intformle_wf itermMultiply_wf int_formula_prop_le_lemma int_term_value_mul_lemma rleq_functionality rabs_functionality rsub_functionality req_weakening uiff_transitivity2 real_term_polynomial itermSubtract_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma req-iff-rsub-is-0 req_transitivity real_term_value_mul_lemma rinv-as-rdiv squash_wf true_wf rabs-int infinitesmal-difference sq_stable__all sq_stable__rleq less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin sqequalRule lambdaEquality hypothesisEquality hypothesis imageElimination baseClosed imageMemberEquality equalitySymmetry equalityTransitivity axiomEquality minusEquality applyEquality independent_pairEquality computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination independent_functionElimination because_Cache inrFormation natural_numberEquality functionEquality rename setElimination dependent_functionElimination isect_memberFormation independent_isectElimination productElimination lemma_by_obid dependent_set_memberFormation dependent_set_memberEquality multiplyEquality

Latex:
\mforall{}a,b:\mBbbR{}.    (lim  n\mrightarrow{}\minfty{}.a  =  b  \mLeftarrow{}{}\mRightarrow{}  a  =  b)



Date html generated: 2017_10_03-AM-09_05_04
Last ObjectModification: 2017_07_28-AM-07_41_19

Theory : reals


Home Index