Step
*
of Lemma
rational-approx-implies-req
∀[k:ℕ+]. ∀[x:ℝ]. ∀[a:ℕ+ ⟶ ℤ].
((∀n:ℕ+. (|x - (r(a n)/r(2 * n))| ≤ (r(k)/r(n))))
⇒ {k-regular-seq(a) ∧ (accelerate(k;a) = x)})
BY
{ (Auto
THEN Unfold `guard` 0
THEN (Assert ∀n,m:ℕ+. (|(r(a n)/r(2 * n)) - (r(a m)/r(2 * m))| ≤ ((r(k)/r(n)) + (r(k)/r(m)))) BY
(Auto
THEN (Assert |x - (r(a n)/r(2 * n))| ≤ (r(k)/r(n)) BY
Auto)
THEN (Assert |x - (r(a m)/r(2 * m))| ≤ (r(k)/r(m)) BY
Auto)
THEN UseTriangleInequality [⌜x⌝]⋅))) }
1
1. k : ℕ+
2. x : ℝ
3. a : ℕ+ ⟶ ℤ
4. ∀n:ℕ+. (|x - (r(a n)/r(2 * n))| ≤ (r(k)/r(n)))
5. ∀n,m:ℕ+. (|(r(a n)/r(2 * n)) - (r(a m)/r(2 * m))| ≤ ((r(k)/r(n)) + (r(k)/r(m))))
⊢ k-regular-seq(a) ∧ (accelerate(k;a) = x)
Latex:
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}]. \mforall{}[x:\mBbbR{}]. \mforall{}[a:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}].
((\mforall{}n:\mBbbN{}\msupplus{}. (|x - (r(a n)/r(2 * n))| \mleq{} (r(k)/r(n)))) {}\mRightarrow{} \{k-regular-seq(a) \mwedge{} (accelerate(k;a) = x)\})
By
Latex:
(Auto
THEN Unfold `guard` 0
THEN (Assert \mforall{}n,m:\mBbbN{}\msupplus{}. (|(r(a n)/r(2 * n)) - (r(a m)/r(2 * m))| \mleq{} ((r(k)/r(n)) + (r(k)/r(m)))) BY
(Auto
THEN (Assert |x - (r(a n)/r(2 * n))| \mleq{} (r(k)/r(n)) BY
Auto)
THEN (Assert |x - (r(a m)/r(2 * m))| \mleq{} (r(k)/r(m)) BY
Auto)
THEN UseTriangleInequality [\mkleeneopen{}x\mkleeneclose{}]\mcdot{})))
Home
Index