Nuprl Lemma : rational-approx-implies-req

[k:ℕ+]. ∀[x:ℝ]. ∀[a:ℕ+ ⟶ ℤ].
  ((∀n:ℕ+(|x (r(a n)/r(2 n))| ≤ (r(k)/r(n))))  {k-regular-seq(a) ∧ (accelerate(k;a) x)})


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y req: y int-to-real: r(n) accelerate: accelerate(k;f) real: regular-int-seq: k-regular-seq(f) nat_plus: + uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] multiply: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q guard: {T} all: x:A. B[x] rev_uimplies: rev_uimplies(P;Q) nat_plus: + uimplies: supposing a rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: rge: x ≥ y uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] regular-int-seq: k-regular-seq(f) le: A ≤ B subtype_rel: A ⊆B nat: req_int_terms: t1 ≡ t2 cand: c∧ B less_than: a < b squash: T less_than': less_than'(a;b) true: True rless: x < y sq_exists: x:A [B[x]] real: sq_stable: SqStable(P) nequal: a ≠ b ∈  sq_type: SQType(T) int_nzero: -o rdiv: (x/y) bdd-diff: bdd-diff(f;g) ge: i ≥  rational-approx: (x within 1/n)
Lemmas referenced :  rleq_functionality_wrt_implies rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rleq_weakening_equal rleq_weakening radd_wf r-triangle-inequality2 radd_functionality_wrt_rleq rleq_functionality rabs-difference-symmetry req_weakening nat_plus_wf all_wf rleq_wf less_than'_wf absval_wf subtract_wf nat_wf req_witness accelerate_wf regular-int-seq_wf real_wf itermSubtract_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma rleq-int rmul_wf rdiv-is-positive rmul_preserves_rleq squash_wf true_wf rneq_wf rabs-int iff_weakening_equal absval_pos le_wf mul_bounds_1a false_wf nat_plus_subtype_nat mul_bounds_1b less_than_wf mul_nat_plus req_transitivity rabs_functionality req_inversion rsub-int rsub_functionality rmul-int rmul_functionality radd-int rless_functionality rabs-of-nonneg uiff_transitivity rabs-rdiv rabs-rmul rleq-int-fractions2 sq_stable__less_than decidable__le intformle_wf int_formula_prop_le_lemma req_wf radd_functionality rinv_wf2 rneq_functionality rneq-int int_entire_a subtype_base_sq int_subtype_base equal-wf-base mul_nzero subtype_rel_sets nequal_wf intformeq_wf int_formula_prop_eq_lemma equal-wf-T-base req_functionality rmul-distrib rinv_functionality2 rinv-of-rmul rmul-rinv3 real_term_value_mul_lemma rmul-rinv rmul-ac rmul-rsub-distrib rinv-mul-as-rdiv itermAdd_wf uimplies_transitivity real_term_value_add_lemma req-iff-rabs-rleq-bound accelerate-bdd-diff nat_properties uiff_transitivity2 rsub-rdiv rdiv_functionality set_subtype_base absval-non-neg equal_wf mul_preserves_le rleq-int-fractions multiply-is-int-iff int_term_value_add_lemma int-rdiv_wf rational-approx_wf rational-approx-property int-rdiv-req
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality functionExtensionality because_Cache hypothesis multiplyEquality natural_numberEquality setElimination rename independent_isectElimination sqequalRule inrFormation dependent_functionElimination productElimination independent_functionElimination unionElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation equalityTransitivity equalitySymmetry independent_pairEquality addEquality axiomEquality dependent_set_memberEquality functionEquality inlFormation imageMemberEquality baseClosed productEquality imageElimination universeEquality addLevel instantiate cumulativity setEquality applyLambdaEquality baseApply closedConclusion

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbR{}].  \mforall{}[a:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].
    ((\mforall{}n:\mBbbN{}\msupplus{}.  (|x  -  (r(a  n)/r(2  *  n))|  \mleq{}  (r(k)/r(n))))  {}\mRightarrow{}  \{k-regular-seq(a)  \mwedge{}  (accelerate(k;a)  =  x)\})



Date html generated: 2018_05_22-PM-01_58_13
Last ObjectModification: 2017_10_26-PM-03_23_18

Theory : reals


Home Index