Nuprl Lemma : rmul-rsub-distrib
∀[a,b,c:ℝ].  (((a * (b - c)) = ((a * b) - a * c)) ∧ (((b - c) * a) = ((b * a) - c * a)))
Proof
Definitions occuring in Statement : 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
rsub: x - y
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rmul_wf, 
rsub_wf, 
real_wf, 
radd_wf, 
rminus_wf, 
req_weakening, 
req_wf, 
req_functionality, 
req_transitivity, 
rmul-distrib, 
radd_functionality, 
rmul_over_rminus, 
uiff_transitivity, 
rminus_functionality, 
rmul_comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}[a,b,c:\mBbbR{}].    (((a  *  (b  -  c))  =  ((a  *  b)  -  a  *  c))  \mwedge{}  (((b  -  c)  *  a)  =  ((b  *  a)  -  c  *  a)))
Date html generated:
2017_10_02-PM-07_17_35
Last ObjectModification:
2017_07_28-AM-07_21_12
Theory : reals
Home
Index