Nuprl Lemma : rmul-rsub-distrib

[a,b,c:ℝ].  (((a (b c)) ((a b) c)) ∧ (((b c) a) ((b a) a)))


Proof




Definitions occuring in Statement :  rsub: y req: y rmul: b real: uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B implies:  Q uimplies: supposing a rsub: y uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rmul_wf rsub_wf real_wf radd_wf rminus_wf req_weakening req_wf req_functionality req_transitivity rmul-distrib radd_functionality rmul_over_rminus uiff_transitivity rminus_functionality rmul_comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality extract_by_obid isectElimination hypothesisEquality independent_functionElimination isect_memberEquality because_Cache independent_isectElimination

Latex:
\mforall{}[a,b,c:\mBbbR{}].    (((a  *  (b  -  c))  =  ((a  *  b)  -  a  *  c))  \mwedge{}  (((b  -  c)  *  a)  =  ((b  *  a)  -  c  *  a)))



Date html generated: 2017_10_02-PM-07_17_35
Last ObjectModification: 2017_07_28-AM-07_21_12

Theory : reals


Home Index