Nuprl Lemma : rdiv-is-positive
∀x,y:ℝ. (y ≠ r0
⇒ (r0 < (x/y)
⇐⇒ ((r0 < x) ∧ (r0 < y)) ∨ ((x < r0) ∧ (y < r0))))
Proof
Definitions occuring in Statement :
rdiv: (x/y)
,
rneq: x ≠ y
,
rless: x < y
,
int-to-real: r(n)
,
real: ℝ
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
or: P ∨ Q
,
and: P ∧ Q
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
member: t ∈ T
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
rev_implies: P
⇐ Q
,
rneq: x ≠ y
,
or: P ∨ Q
,
guard: {T}
,
cand: A c∧ B
,
itermConstant: "const"
,
req_int_terms: t1 ≡ t2
,
false: False
,
not: ¬A
,
top: Top
,
uiff: uiff(P;Q)
,
rdiv: (x/y)
Lemmas referenced :
rless_wf,
int-to-real_wf,
rdiv_wf,
or_wf,
rneq_wf,
real_wf,
rmul_preserves_rless,
rminus_wf,
rless-implies-rless,
real_term_polynomial,
itermSubtract_wf,
itermConstant_wf,
itermVar_wf,
itermMinus_wf,
real_term_value_const_lemma,
real_term_value_sub_lemma,
real_term_value_var_lemma,
real_term_value_minus_lemma,
req-iff-rsub-is-0,
rsub_wf,
rmul_wf,
rinv_wf2,
rless_functionality,
itermMultiply_wf,
real_term_value_mul_lemma,
req_transitivity,
rminus_functionality,
rmul_functionality,
rmul-rinv,
req_weakening,
rmul-identity1,
rmul-zero-both,
rmul-rdiv-cancel2
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
independent_pairFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
hypothesis,
hypothesisEquality,
independent_isectElimination,
productEquality,
unionElimination,
sqequalRule,
inrFormation,
inlFormation,
dependent_functionElimination,
independent_functionElimination,
because_Cache,
computeAll,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
productElimination,
promote_hyp,
addLevel
Latex:
\mforall{}x,y:\mBbbR{}. (y \mneq{} r0 {}\mRightarrow{} (r0 < (x/y) \mLeftarrow{}{}\mRightarrow{} ((r0 < x) \mwedge{} (r0 < y)) \mvee{} ((x < r0) \mwedge{} (y < r0))))
Date html generated:
2017_10_03-AM-08_47_47
Last ObjectModification:
2017_07_28-AM-07_33_04
Theory : reals
Home
Index