Nuprl Lemma : rdiv-is-positive

x,y:ℝ.  (y ≠ r0  (r0 < (x/y) ⇐⇒ ((r0 < x) ∧ (r0 < y)) ∨ ((x < r0) ∧ (y < r0))))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y rless: x < y int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] uimplies: supposing a rev_implies:  Q rneq: x ≠ y or: P ∨ Q guard: {T} cand: c∧ B itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) rdiv: (x/y)
Lemmas referenced :  rless_wf int-to-real_wf rdiv_wf or_wf rneq_wf real_wf rmul_preserves_rless rminus_wf rless-implies-rless real_term_polynomial itermSubtract_wf itermConstant_wf itermVar_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 rsub_wf rmul_wf rinv_wf2 rless_functionality itermMultiply_wf real_term_value_mul_lemma req_transitivity rminus_functionality rmul_functionality rmul-rinv req_weakening rmul-identity1 rmul-zero-both rmul-rdiv-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality independent_isectElimination productEquality unionElimination sqequalRule inrFormation inlFormation dependent_functionElimination independent_functionElimination because_Cache computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productElimination promote_hyp addLevel

Latex:
\mforall{}x,y:\mBbbR{}.    (y  \mneq{}  r0  {}\mRightarrow{}  (r0  <  (x/y)  \mLeftarrow{}{}\mRightarrow{}  ((r0  <  x)  \mwedge{}  (r0  <  y))  \mvee{}  ((x  <  r0)  \mwedge{}  (y  <  r0))))



Date html generated: 2017_10_03-AM-08_47_47
Last ObjectModification: 2017_07_28-AM-07_33_04

Theory : reals


Home Index