Nuprl Lemma : rdiv-is-positive
∀x,y:ℝ.  (y ≠ r0 
⇒ (r0 < (x/y) 
⇐⇒ ((r0 < x) ∧ (r0 < y)) ∨ ((x < r0) ∧ (y < r0))))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
guard: {T}
, 
cand: A c∧ B
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
, 
uiff: uiff(P;Q)
, 
rdiv: (x/y)
Lemmas referenced : 
rless_wf, 
int-to-real_wf, 
rdiv_wf, 
or_wf, 
rneq_wf, 
real_wf, 
rmul_preserves_rless, 
rminus_wf, 
rless-implies-rless, 
real_term_polynomial, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
itermMinus_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
req-iff-rsub-is-0, 
rsub_wf, 
rmul_wf, 
rinv_wf2, 
rless_functionality, 
itermMultiply_wf, 
real_term_value_mul_lemma, 
req_transitivity, 
rminus_functionality, 
rmul_functionality, 
rmul-rinv, 
req_weakening, 
rmul-identity1, 
rmul-zero-both, 
rmul-rdiv-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
productEquality, 
unionElimination, 
sqequalRule, 
inrFormation, 
inlFormation, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
promote_hyp, 
addLevel
Latex:
\mforall{}x,y:\mBbbR{}.    (y  \mneq{}  r0  {}\mRightarrow{}  (r0  <  (x/y)  \mLeftarrow{}{}\mRightarrow{}  ((r0  <  x)  \mwedge{}  (r0  <  y))  \mvee{}  ((x  <  r0)  \mwedge{}  (y  <  r0))))
Date html generated:
2017_10_03-AM-08_47_47
Last ObjectModification:
2017_07_28-AM-07_33_04
Theory : reals
Home
Index