Nuprl Lemma : rsub-rdiv

[a,b,c:ℝ].  ((b/a) (c/a)) (b c/a) supposing a ≠ r0


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y rsub: y req: y int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a false: False implies:  Q not: ¬A rat_term_to_real: rat_term_to_real(f;t) rtermDivide: num "/" denom rat_term_ind: rat_term_ind rtermSubtract: left "-" right rtermVar: rtermVar(var) pi1: fst(t) and: P ∧ Q true: True pi2: snd(t) prop:
Lemmas referenced :  assert-rat-term-eq2 rtermSubtract_wf rtermDivide_wf rtermVar_wf int-to-real_wf istype-int req_witness rsub_wf rdiv_wf rneq_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis lambdaEquality_alt int_eqEquality hypothesisEquality independent_isectElimination approximateComputation sqequalRule independent_pairFormation independent_functionElimination universeIsType isect_memberEquality_alt because_Cache isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[a,b,c:\mBbbR{}].    ((b/a)  -  (c/a))  =  (b  -  c/a)  supposing  a  \mneq{}  r0



Date html generated: 2019_10_29-AM-09_56_39
Last ObjectModification: 2019_04_01-PM-07_08_32

Theory : reals


Home Index