Step
*
1
of Lemma
rational-inner-approx-int
1. x : ℝ
2. n : ℕ+
3. (|rational-inner-approx(x;n)| ≤ |x|) ∧ (|x - rational-inner-approx(x;n)| ≤ (r(2)/r(n)))
⊢ ∃z:ℤ. ((|(r(z)/r(4 * n))| ≤ |x|) ∧ (|x - (r(z)/r(4 * n))| ≤ (r(2)/r(n))))
BY
{ (Assert ⌜∃z:ℤ. (rational-inner-approx(x;n) = (r(z)/r(4 * n)))⌝⋅ THENM (ParallelLast THEN RWO "-1<" 0 THEN Auto)) }
1
.....assertion..... 
1. x : ℝ
2. n : ℕ+
3. (|rational-inner-approx(x;n)| ≤ |x|) ∧ (|x - rational-inner-approx(x;n)| ≤ (r(2)/r(n)))
⊢ ∃z:ℤ. (rational-inner-approx(x;n) = (r(z)/r(4 * n)))
Latex:
Latex:
1.  x  :  \mBbbR{}
2.  n  :  \mBbbN{}\msupplus{}
3.  (|rational-inner-approx(x;n)|  \mleq{}  |x|)  \mwedge{}  (|x  -  rational-inner-approx(x;n)|  \mleq{}  (r(2)/r(n)))
\mvdash{}  \mexists{}z:\mBbbZ{}.  ((|(r(z)/r(4  *  n))|  \mleq{}  |x|)  \mwedge{}  (|x  -  (r(z)/r(4  *  n))|  \mleq{}  (r(2)/r(n))))
By
Latex:
(Assert  \mkleeneopen{}\mexists{}z:\mBbbZ{}.  (rational-inner-approx(x;n)  =  (r(z)/r(4  *  n)))\mkleeneclose{}\mcdot{}
THENM  (ParallelLast  THEN  RWO  "-1<"  0  THEN  Auto)
)
Home
Index