Step
*
1
1
of Lemma
rational-inner-approx-int
.....assertion.....
1. x : ℝ
2. n : ℕ+
3. (|rational-inner-approx(x;n)| ≤ |x|) ∧ (|x - rational-inner-approx(x;n)| ≤ (r(2)/r(n)))
⊢ ∃z:ℤ. (rational-inner-approx(x;n) = (r(z)/r(4 * n)))
BY
{ (Unfold `rational-inner-approx` 0 THEN RepeatFor 3 ((CallByValueReduce 0 THENA Auto))) }
1
1. x : ℝ
2. n : ℕ+
3. (|rational-inner-approx(x;n)| ≤ |x|) ∧ (|x - rational-inner-approx(x;n)| ≤ (r(2)/r(n)))
⊢ ∃z:ℤ
((r(if 4 <z x (2 * n) then (x (2 * n)) - 2
if x (2 * n) <z -4 then (x (2 * n)) + 2
else 0
fi ))/2 * 2 * n
= (r(z)/r(4 * n)))
Latex:
Latex:
.....assertion.....
1. x : \mBbbR{}
2. n : \mBbbN{}\msupplus{}
3. (|rational-inner-approx(x;n)| \mleq{} |x|) \mwedge{} (|x - rational-inner-approx(x;n)| \mleq{} (r(2)/r(n)))
\mvdash{} \mexists{}z:\mBbbZ{}. (rational-inner-approx(x;n) = (r(z)/r(4 * n)))
By
Latex:
(Unfold `rational-inner-approx` 0 THEN RepeatFor 3 ((CallByValueReduce 0 THENA Auto)))
Home
Index