Nuprl Lemma : rational-inner-approx-property
∀x:ℝ. ∀n:ℕ+.  ((|rational-inner-approx(x;n)| ≤ |x|) ∧ (|x - rational-inner-approx(x;n)| ≤ (r(2)/r(n))))
Proof
Definitions occuring in Statement : 
rational-inner-approx: rational-inner-approx(x;n), 
rdiv: (x/y), 
rleq: x ≤ y, 
rabs: |x|, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
rational-approx: (x within 1/n), 
rational-inner-approx: rational-inner-approx(x;n), 
real: ℝ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
has-value: (a)↓, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
subtype_rel: A ⊆r B, 
rneq: x ≠ y, 
top: Top, 
rev_uimplies: rev_uimplies(P;Q), 
rat_term_to_real: rat_term_to_real(f;t), 
rtermSubtract: left "-" right, 
rat_term_ind: rat_term_ind, 
rtermDivide: num "/" denom, 
rtermConstant: "const", 
rtermVar: rtermVar(var), 
pi1: fst(t), 
true: True, 
pi2: snd(t), 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
int-to-real: r(n), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cand: A c∧ B, 
req_int_terms: t1 ≡ t2, 
sq_stable: SqStable(P), 
squash: ↓T, 
nat: ℕ, 
rge: x ≥ y, 
absval: |i|, 
rtermAdd: left "+" right, 
less_than: a < b, 
less_than': less_than'(a;b), 
rdiv: (x/y), 
ge: i ≥ j 
Latex:
\mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.
    ((|rational-inner-approx(x;n)|  \mleq{}  |x|)  \mwedge{}  (|x  -  rational-inner-approx(x;n)|  \mleq{}  (r(2)/r(n))))
Date html generated:
2020_05_20-AM-11_04_16
Last ObjectModification:
2020_01_03-PM-08_04_47
Theory : reals
Home
Index