Step
*
1
1
1
1
1
1
of Lemma
rational-inner-approx-property
1. x : ℝ
2. n : ℕ+
3. a : ℤ
4. (x (2 * n)) = a ∈ ℤ
5. |x - (r(a))/2 * 2 * n| ≤ (r1/r(2 * n))
6. 4 < a
7. v : ℝ
8. r(a) = v ∈ ℝ
9. m : ℕ+
10. (2 * n) = m ∈ ℕ+
11. (r1/r(m)) = (r(2)/r(2 * m))
⊢ (v - r(2)/r(2 * m)) = ((v/r(2 * m)) - (r(2)/r(2 * m)))
BY
{ ((Assert r0 < r(2 * m) BY Auto) THEN MoveToConcl (-1) THEN GenConclTerm ⌜r(2 * m)⌝⋅ THEN Auto) }
Latex:
Latex:
1. x : \mBbbR{}
2. n : \mBbbN{}\msupplus{}
3. a : \mBbbZ{}
4. (x (2 * n)) = a
5. |x - (r(a))/2 * 2 * n| \mleq{} (r1/r(2 * n))
6. 4 < a
7. v : \mBbbR{}
8. r(a) = v
9. m : \mBbbN{}\msupplus{}
10. (2 * n) = m
11. (r1/r(m)) = (r(2)/r(2 * m))
\mvdash{} (v - r(2)/r(2 * m)) = ((v/r(2 * m)) - (r(2)/r(2 * m)))
By
Latex:
((Assert r0 < r(2 * m) BY Auto) THEN MoveToConcl (-1) THEN GenConclTerm \mkleeneopen{}r(2 * m)\mkleeneclose{}\mcdot{} THEN Auto)
Home
Index