Step
*
2
1
2
1
1
of Lemma
real-binomial
1. n : ℤ
2. 0 < n
3. ∀[a,b:ℝ]. (a + b^n - 1 = Σ{r(choose(n - 1;i)) * a^n - 1 - i * b^i | 0≤i≤n - 1})
4. a : ℝ
5. b : ℝ
6. Σ{(r(choose(n - 1;i)) * a^n - 1 - i * b^i) * a | 0≤i≤n - 1} = Σ{r(choose(n - 1;i)) * a^n - i * b^i | 0≤i≤n - 1}
7. ∀[n,m:ℤ]. ∀[x:Top]. (Σ{x[i] | n≤i≤m} ~ Σ{x[i + (-1)] | n - -1≤i≤m - -1})
⊢ Σ{(r(choose(n - 1;i)) * a^n - 1 - i * b^i) * b | 0≤i≤n - 1} = Σ{r(choose(n - 1;i - 1)) * a^n - i * b^i | 1≤i≤n}
BY
{ ((RW (AddrC [1] (HypC (-1))) 0 THENA Auto)
THEN Reduce 0
THEN (RW IntNormC 0 THENA Auto)
THEN (BLemma `rsum_functionality` THEN Auto)
THEN D 0
THEN Auto
THEN GenConclTerms Auto [⌜r(choose((-1) + n;(-1) + i))⌝;⌜a^(-i) + n⌝]⋅) }
Latex:
Latex:
1. n : \mBbbZ{}
2. 0 < n
3. \mforall{}[a,b:\mBbbR{}]. (a + b\^{}n - 1 = \mSigma{}\{r(choose(n - 1;i)) * a\^{}n - 1 - i * b\^{}i | 0\mleq{}i\mleq{}n - 1\})
4. a : \mBbbR{}
5. b : \mBbbR{}
6. \mSigma{}\{(r(choose(n - 1;i)) * a\^{}n - 1 - i * b\^{}i) * a | 0\mleq{}i\mleq{}n - 1\}
= \mSigma{}\{r(choose(n - 1;i)) * a\^{}n - i * b\^{}i | 0\mleq{}i\mleq{}n - 1\}
7. \mforall{}[n,m:\mBbbZ{}]. \mforall{}[x:Top]. (\mSigma{}\{x[i] | n\mleq{}i\mleq{}m\} \msim{} \mSigma{}\{x[i + (-1)] | n - -1\mleq{}i\mleq{}m - -1\})
\mvdash{} \mSigma{}\{(r(choose(n - 1;i)) * a\^{}n - 1 - i * b\^{}i) * b | 0\mleq{}i\mleq{}n - 1\}
= \mSigma{}\{r(choose(n - 1;i - 1)) * a\^{}n - i * b\^{}i | 1\mleq{}i\mleq{}n\}
By
Latex:
((RW (AddrC [1] (HypC (-1))) 0 THENA Auto)
THEN Reduce 0
THEN (RW IntNormC 0 THENA Auto)
THEN (BLemma `rsum\_functionality` THEN Auto)
THEN D 0
THEN Auto
THEN GenConclTerms Auto [\mkleeneopen{}r(choose((-1) + n;(-1) + i))\mkleeneclose{};\mkleeneopen{}a\^{}(-i) + n\mkleeneclose{}]\mcdot{})
Home
Index