Nuprl Lemma : real-continuity

a,b:ℝ.  ∀f:[a, b] ⟶ℝreal-cont(f;a;b) supposing real-fun(f;a;b) supposing a ≤ b


Proof




Definitions occuring in Statement :  real-cont: real-cont(f;a;b) real-fun: real-fun(f;a;b) rfun: I ⟶ℝ rccint: [l, u] rleq: x ≤ y real: uimplies: supposing a all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q real-fun: real-fun(f;a;b) implies:  Q rfun: I ⟶ℝ prop: mcompact: mcompact(X;d) subtype_rel: A ⊆B top: Top mfun: FUN(X ⟶ Y) is-mfun: f:FUN(X;Y) so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q rmetric: rmetric() m-unif-cont: UC(f:X ⟶ Y) real-cont: real-cont(f;a;b) mdist: mdist(d;x;y)

Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  real-cont(f;a;b)  supposing  real-fun(f;a;b)  supposing  a  \mleq{}  b



Date html generated: 2020_05_20-PM-00_04_23
Last ObjectModification: 2019_11_25-PM-00_24_41

Theory : reals


Home Index