Nuprl Lemma : real-continuity
∀a,b:ℝ.  ∀f:[a, b] ⟶ℝ. real-cont(f;a;b) supposing real-fun(f;a;b) supposing a ≤ b
Proof
Definitions occuring in Statement : 
real-cont: real-cont(f;a;b), 
real-fun: real-fun(f;a;b), 
rfun: I ⟶ℝ, 
rccint: [l, u], 
rleq: x ≤ y, 
real: ℝ, 
uimplies: b supposing a, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
and: P ∧ Q, 
real-fun: real-fun(f;a;b), 
implies: P ⇒ Q, 
rfun: I ⟶ℝ, 
prop: ℙ, 
mcompact: mcompact(X;d), 
subtype_rel: A ⊆r B, 
top: Top, 
mfun: FUN(X ⟶ Y), 
is-mfun: f:FUN(X;Y), 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rmetric: rmetric(), 
m-unif-cont: UC(f:X ⟶ Y), 
real-cont: real-cont(f;a;b), 
mdist: mdist(d;x;y)
Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  real-cont(f;a;b)  supposing  real-fun(f;a;b)  supposing  a  \mleq{}  b
Date html generated:
2020_05_20-PM-00_04_23
Last ObjectModification:
2019_11_25-PM-00_24_41
Theory : reals
Home
Index