Nuprl Lemma : real-continuity
∀a,b:ℝ.  ∀f:[a, b] ⟶ℝ. real-cont(f;a;b) supposing real-fun(f;a;b) supposing a ≤ b
Proof
Definitions occuring in Statement : 
real-cont: real-cont(f;a;b)
, 
real-fun: real-fun(f;a;b)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
rleq: x ≤ y
, 
real: ℝ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
real-fun: real-fun(f;a;b)
, 
implies: P 
⇒ Q
, 
rfun: I ⟶ℝ
, 
prop: ℙ
, 
mcompact: mcompact(X;d)
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
mfun: FUN(X ⟶ Y)
, 
is-mfun: f:FUN(X;Y)
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rmetric: rmetric()
, 
m-unif-cont: UC(f:X ⟶ Y)
, 
real-cont: real-cont(f;a;b)
, 
mdist: mdist(d;x;y)
Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  real-cont(f;a;b)  supposing  real-fun(f;a;b)  supposing  a  \mleq{}  b
Date html generated:
2020_05_20-PM-00_04_23
Last ObjectModification:
2019_11_25-PM-00_24_41
Theory : reals
Home
Index