Step
*
1
1
of Lemma
real-fun-uniformly-positive
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. ∀f:[a, b] ⟶ℝ
∃bnd:ℝ. ((r0 ≤ bnd) ∧ (∀x:ℝ. ((x ∈ [a, b])
⇒ (|f x| ≤ bnd))))
supposing ∀x,y:{x:ℝ| x ∈ [a, b]} . ((x = y)
⇒ (f[x] = f[y]))
4. f : [a, b] ⟶ℝ
5. real-fun(f;a;b)
6. ∀x:{x:ℝ| x ∈ [a, b]} . (r0 < (f x))
7. x : {x:ℝ| x ∈ [a, b]}
8. y : {x:ℝ| x ∈ [a, b]}
9. x = y
⊢ λx.(r1/f x)[x] = λx.(r1/f x)[y]
BY
{ (RepUR ``real-fun`` -5 THEN RepUR ``so_apply`` 0 THEN Auto) }
Latex:
Latex:
1. a : \mBbbR{}
2. b : \{b:\mBbbR{}| a \mleq{} b\}
3. \mforall{}f:[a, b] {}\mrightarrow{}\mBbbR{}
\mexists{}bnd:\mBbbR{}. ((r0 \mleq{} bnd) \mwedge{} (\mforall{}x:\mBbbR{}. ((x \mmember{} [a, b]) {}\mRightarrow{} (|f x| \mleq{} bnd))))
supposing \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [a, b]\} . ((x = y) {}\mRightarrow{} (f[x] = f[y]))
4. f : [a, b] {}\mrightarrow{}\mBbbR{}
5. real-fun(f;a;b)
6. \mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (r0 < (f x))
7. x : \{x:\mBbbR{}| x \mmember{} [a, b]\}
8. y : \{x:\mBbbR{}| x \mmember{} [a, b]\}
9. x = y
\mvdash{} \mlambda{}x.(r1/f x)[x] = \mlambda{}x.(r1/f x)[y]
By
Latex:
(RepUR ``real-fun`` -5 THEN RepUR ``so\_apply`` 0 THEN Auto)
Home
Index