Step
*
1
2
of Lemma
real-fun-uniformly-positive
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. ∀f:[a, b] ⟶ℝ
∃bnd:ℝ. ((r0 ≤ bnd) ∧ (∀x:ℝ. ((x ∈ [a, b])
⇒ (|f x| ≤ bnd))))
supposing ∀x,y:{x:ℝ| x ∈ [a, b]} . ((x = y)
⇒ (f[x] = f[y]))
4. f : [a, b] ⟶ℝ
5. real-fun(f;a;b)
6. ∀x:{x:ℝ| x ∈ [a, b]} . (r0 < (f x))
7. ∃bnd:ℝ. ((r0 ≤ bnd) ∧ (∀x:ℝ. ((x ∈ [a, b])
⇒ (|(λx.(r1/f x)) x| ≤ bnd))))
⊢ ∃c:{c:ℝ| r0 < c} . ∀x:{x:ℝ| x ∈ [a, b]} . (c < (f x))
BY
{ ((Reduce -1 THEN ExRepD) THEN (InstLemma `r-archimedean` [⌜bnd⌝]⋅ THENA Auto) THEN ExRepD) }
1
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. ∀f:[a, b] ⟶ℝ
∃bnd:ℝ. ((r0 ≤ bnd) ∧ (∀x:ℝ. ((x ∈ [a, b])
⇒ (|f x| ≤ bnd))))
supposing ∀x,y:{x:ℝ| x ∈ [a, b]} . ((x = y)
⇒ (f[x] = f[y]))
4. f : [a, b] ⟶ℝ
5. real-fun(f;a;b)
6. ∀x:{x:ℝ| x ∈ [a, b]} . (r0 < (f x))
7. bnd : ℝ
8. r0 ≤ bnd
9. ∀x:ℝ. (((a ≤ x) ∧ (x ≤ b))
⇒ (|(r1/f x)| ≤ bnd))
10. n : ℕ
11. r(-n) ≤ bnd
12. bnd ≤ r(n)
⊢ ∃c:{c:ℝ| r0 < c} . ∀x:{x:ℝ| x ∈ [a, b]} . (c < (f x))
Latex:
Latex:
1. a : \mBbbR{}
2. b : \{b:\mBbbR{}| a \mleq{} b\}
3. \mforall{}f:[a, b] {}\mrightarrow{}\mBbbR{}
\mexists{}bnd:\mBbbR{}. ((r0 \mleq{} bnd) \mwedge{} (\mforall{}x:\mBbbR{}. ((x \mmember{} [a, b]) {}\mRightarrow{} (|f x| \mleq{} bnd))))
supposing \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [a, b]\} . ((x = y) {}\mRightarrow{} (f[x] = f[y]))
4. f : [a, b] {}\mrightarrow{}\mBbbR{}
5. real-fun(f;a;b)
6. \mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (r0 < (f x))
7. \mexists{}bnd:\mBbbR{}. ((r0 \mleq{} bnd) \mwedge{} (\mforall{}x:\mBbbR{}. ((x \mmember{} [a, b]) {}\mRightarrow{} (|(\mlambda{}x.(r1/f x)) x| \mleq{} bnd))))
\mvdash{} \mexists{}c:\{c:\mBbbR{}| r0 < c\} . \mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (c < (f x))
By
Latex:
((Reduce -1 THEN ExRepD) THEN (InstLemma `r-archimedean` [\mkleeneopen{}bnd\mkleeneclose{}]\mcdot{} THENA Auto) THEN ExRepD)
Home
Index