Nuprl Lemma : real-matrix-add_wf
∀[a,b:ℕ]. ∀[A,B:ℝ(a × b)].  (A + B ∈ ℝ(a × b))
Proof
Definitions occuring in Statement : 
real-matrix-add: A + B
, 
rmatrix: ℝ(a × b)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
rmatrix: ℝ(a × b)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-matrix-add: A + B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
Lemmas referenced : 
radd_wf, 
int_seg_wf, 
real_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
universeIsType, 
setElimination, 
rename, 
productElimination, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
functionIsType
Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[A,B:\mBbbR{}(a  \mtimes{}  b)].    (A  +  B  \mmember{}  \mBbbR{}(a  \mtimes{}  b))
Date html generated:
2019_10_30-AM-08_17_32
Last ObjectModification:
2019_09_19-AM-11_48_35
Theory : reals
Home
Index