Nuprl Lemma : real-term-nonneg

[t:int_term()]. ∀f:ℤ ⟶ ℝ(r0 ≤ real_term_value(f;t)) supposing ↑nonneg-poly(int_term_to_ipoly(t))


Proof




Definitions occuring in Statement :  rleq: x ≤ y real_term_value: real_term_value(f;t) int-to-real: r(n) real: nonneg-poly: nonneg-poly(p) int_term_to_ipoly: int_term_to_ipoly(t) int_term: int_term() assert: b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q req_int_terms: t1 ≡ t2 guard: {T} subtype_rel: A ⊆B iPolynomial: iPolynomial()
Lemmas referenced :  ipolynomial-nonneg int_term_to_ipoly_wf istype-int real_wf le_witness_for_triv istype-assert nonneg-poly_wf int_term_wf real_term_polynomial rleq_transitivity int-to-real_wf real_term_value_wf ipolynomial-term_wf rleq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination dependent_functionElimination functionIsType universeIsType sqequalRule lambdaEquality_alt productElimination equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies natural_numberEquality applyEquality setElimination rename because_Cache

Latex:
\mforall{}[t:int\_term()].  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}.  (r0  \mleq{}  real\_term\_value(f;t))  supposing  \muparrow{}nonneg-poly(int\_term\_to\_ipoly(t))



Date html generated: 2019_10_29-AM-10_08_33
Last ObjectModification: 2019_04_08-PM-06_01_06

Theory : reals


Home Index