Nuprl Lemma : real-term-nonneg
∀[t:int_term()]. ∀f:ℤ ⟶ ℝ. (r0 ≤ real_term_value(f;t)) supposing ↑nonneg-poly(int_term_to_ipoly(t))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
real_term_value: real_term_value(f;t)
, 
int-to-real: r(n)
, 
real: ℝ
, 
nonneg-poly: nonneg-poly(p)
, 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
int_term: int_term()
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
req_int_terms: t1 ≡ t2
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
iPolynomial: iPolynomial()
Lemmas referenced : 
ipolynomial-nonneg, 
int_term_to_ipoly_wf, 
istype-int, 
real_wf, 
le_witness_for_triv, 
istype-assert, 
nonneg-poly_wf, 
int_term_wf, 
real_term_polynomial, 
rleq_transitivity, 
int-to-real_wf, 
real_term_value_wf, 
ipolynomial-term_wf, 
rleq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
functionIsType, 
universeIsType, 
sqequalRule, 
lambdaEquality_alt, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
natural_numberEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache
Latex:
\mforall{}[t:int\_term()].  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}.  (r0  \mleq{}  real\_term\_value(f;t))  supposing  \muparrow{}nonneg-poly(int\_term\_to\_ipoly(t))
Date html generated:
2019_10_29-AM-10_08_33
Last ObjectModification:
2019_04_08-PM-06_01_06
Theory : reals
Home
Index