Nuprl Lemma : real-vec-add-assoc

[n:ℕ]. ∀[X,Y,Z:ℝ^n].  req-vec(n;X Z;X Z)


Proof




Definitions occuring in Statement :  real-vec-add: Y req-vec: req-vec(n;x;y) real-vec: ^n nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  real-vec-add: Y req-vec: req-vec(n;x;y) real-vec: ^n uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q
Lemmas referenced :  radd_assoc int_seg_wf req_witness radd_wf real_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality functionExtensionality hypothesisEquality natural_numberEquality setElimination rename hypothesis because_Cache lambdaEquality dependent_functionElimination independent_functionElimination functionEquality isect_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[X,Y,Z:\mBbbR{}\^{}n].    req-vec(n;X  +  Y  +  Z;X  +  Y  +  Z)



Date html generated: 2016_10_26-AM-10_15_40
Last ObjectModification: 2016_09_26-PM-11_15_11

Theory : reals


Home Index