Nuprl Lemma : real-vec-add-assoc
∀[n:ℕ]. ∀[X,Y,Z:ℝ^n].  req-vec(n;X + Y + Z;X + Y + Z)
Proof
Definitions occuring in Statement : 
real-vec-add: X + Y
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
real-vec-add: X + Y
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
Lemmas referenced : 
radd_assoc, 
int_seg_wf, 
req_witness, 
radd_wf, 
real_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
lambdaEquality, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
isect_memberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[X,Y,Z:\mBbbR{}\^{}n].    req-vec(n;X  +  Y  +  Z;X  +  Y  +  Z)
Date html generated:
2016_10_26-AM-10_15_40
Last ObjectModification:
2016_09_26-PM-11_15_11
Theory : reals
Home
Index