Nuprl Lemma : real-vec-mul-linear-sub

[n:ℕ]. ∀[X,Y:ℝ^n]. ∀[a:ℝ].  req-vec(n;a*X Y;a*X a*Y)


Proof




Definitions occuring in Statement :  real-vec-mul: a*X real-vec-sub: Y req-vec: req-vec(n;x;y) real-vec: ^n real: nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec-mul: a*X real-vec-sub: Y req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec: ^n and: P ∧ Q nat: subtype_rel: A ⊆B implies:  Q
Lemmas referenced :  rmul-rsub-distrib int_seg_wf req_witness real-vec-mul_wf real-vec-sub_wf real-vec_wf real_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality productElimination hypothesis natural_numberEquality setElimination rename lambdaEquality dependent_functionElimination independent_functionElimination isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:\mBbbR{}\^{}n].  \mforall{}[a:\mBbbR{}].    req-vec(n;a*X  -  Y;a*X  -  a*Y)



Date html generated: 2016_10_26-AM-10_16_36
Last ObjectModification: 2016_09_28-PM-00_38_49

Theory : reals


Home Index