Nuprl Lemma : real-vec-sep-iff-rneq
∀n:ℕ. ∀a,c:ℝ^n.  (a ≠ c ⇐⇒ ∃i:ℕn. a i ≠ c i)
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b, 
real-vec: ℝ^n, 
rneq: x ≠ y, 
int_seg: {i..j-}, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
so_lambda: λ2x.t[x], 
real-vec: ℝ^n, 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x]
Lemmas referenced : 
exists_wf, 
int_seg_wf, 
rneq_wf, 
rneq-iff-rabs, 
rless_wf, 
int-to-real_wf, 
rabs_wf, 
rsub_wf, 
iff_wf, 
real-vec-sep-iff, 
real-vec-sep_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
independent_pairFormation, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
addLevel, 
productElimination, 
impliesFunctionality, 
existsFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
existsLevelFunctionality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,c:\mBbbR{}\^{}n.    (a  \mneq{}  c  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  a  i  \mneq{}  c  i)
Date html generated:
2017_10_03-AM-11_00_58
Last ObjectModification:
2017_06_20-PM-02_06_49
Theory : reals
Home
Index