Nuprl Lemma : real-vec-sep-iff-rneq

n:ℕ. ∀a,c:ℝ^n.  (a ≠ ⇐⇒ ∃i:ℕn. i ≠ i)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec: ^n rneq: x ≠ y int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] real-vec: ^n so_apply: x[s] rev_implies:  Q exists: x:A. B[x]
Lemmas referenced :  exists_wf int_seg_wf rneq_wf rneq-iff-rabs rless_wf int-to-real_wf rabs_wf rsub_wf iff_wf real-vec-sep-iff real-vec-sep_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut independent_pairFormation hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality sqequalRule lambdaEquality applyEquality because_Cache addLevel productElimination impliesFunctionality existsFunctionality dependent_functionElimination independent_functionElimination existsLevelFunctionality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,c:\mBbbR{}\^{}n.    (a  \mneq{}  c  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  a  i  \mneq{}  c  i)



Date html generated: 2017_10_03-AM-11_00_58
Last ObjectModification: 2017_06_20-PM-02_06_49

Theory : reals


Home Index