Nuprl Lemma : rneq-iff-rabs

x,y:ℝ.  (x ≠ ⇐⇒ r0 < |x y|)


Proof




Definitions occuring in Statement :  rneq: x ≠ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q top: Top rneq: x ≠ y or: P ∨ Q guard: {T} uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A uiff: uiff(P;Q)
Lemmas referenced :  rneq_wf rless_wf int-to-real_wf rabs_wf rsub_wf real_wf rabs-as-rmax rmax_strict_ub rminus_wf rless-implies-rless real_term_polynomial itermSubtract_wf itermVar_wf itermMinus_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 rneq-if-rabs
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality sqequalRule isect_memberEquality voidElimination voidEquality dependent_functionElimination productElimination independent_functionElimination unionElimination inrFormation independent_isectElimination computeAll lambdaEquality int_eqEquality intEquality inlFormation because_Cache

Latex:
\mforall{}x,y:\mBbbR{}.    (x  \mneq{}  y  \mLeftarrow{}{}\mRightarrow{}  r0  <  |x  -  y|)



Date html generated: 2017_10_03-AM-08_31_12
Last ObjectModification: 2017_07_28-AM-07_26_59

Theory : reals


Home Index