Nuprl Lemma : real-vec-sum_wf

[n,m:ℤ]. ∀[k:ℕ]. ∀[x:{n..m 1-} ⟶ ℝ^k].  {x[k] n≤k≤m} ∈ ℝ^k)


Proof




Definitions occuring in Statement :  real-vec-sum: Σ{x[k] n≤k≤m} real-vec: ^n int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  real-vec: ^n uall: [x:A]. B[x] member: t ∈ T real-vec-sum: Σ{x[k] n≤k≤m} so_lambda: λ2x.t[x] so_apply: x[s] nat:
Lemmas referenced :  rsum_wf int_seg_wf real_wf istype-nat istype-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality universeIsType addEquality natural_numberEquality hypothesis setElimination rename axiomEquality equalityTransitivity equalitySymmetry functionIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}\^{}k].    (\mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\}  \mmember{}  \mBbbR{}\^{}k)



Date html generated: 2019_10_30-AM-08_00_38
Last ObjectModification: 2019_09_17-PM-02_26_45

Theory : reals


Home Index