Nuprl Lemma : real-vec-sum_wf
∀[n,m:ℤ]. ∀[k:ℕ]. ∀[x:{n..m + 1-} ⟶ ℝ^k].  (Σ{x[k] | n≤k≤m} ∈ ℝ^k)
Proof
Definitions occuring in Statement : 
real-vec-sum: Σ{x[k] | n≤k≤m}
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
real-vec: ℝ^n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-vec-sum: Σ{x[k] | n≤k≤m}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
Lemmas referenced : 
rsum_wf, 
int_seg_wf, 
real_wf, 
istype-nat, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
universeIsType, 
addEquality, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}\^{}k].    (\mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\}  \mmember{}  \mBbbR{}\^{}k)
Date html generated:
2019_10_30-AM-08_00_38
Last ObjectModification:
2019_09_17-PM-02_26_45
Theory : reals
Home
Index