Step
*
1
1
of Lemma
real-vec-triangle-equality
1. n : ℕ
2. x : ℝ^n
3. y : ℝ^n
4. z : ℝ^n
5. r0 < d(y;z)
6. ||x - y + y - z|| = (||x - y|| + ||y - z||)
7. ||x - z|| = ||x - y + y - z||
8. t : ℝ
9. r0 ≤ t
10. req-vec(n;x - y;t*y - z)
11. (r0 < d(x;y))
⇒ (r0 < t)
⊢ real-vec-be(n;x;y;z) ∧ ((r0 < d(x;y))
⇒ x-y-z)
BY
{ ((Assert r0 < (r1 + t) BY (RWO "-3<" 0 THEN Auto)) THEN Assert req-vec(n;y;(r1/r1 + t)*x + r1 - (r1/r1 + t)*z)⋅) }
1
.....assertion.....
1. n : ℕ
2. x : ℝ^n
3. y : ℝ^n
4. z : ℝ^n
5. r0 < d(y;z)
6. ||x - y + y - z|| = (||x - y|| + ||y - z||)
7. ||x - z|| = ||x - y + y - z||
8. t : ℝ
9. r0 ≤ t
10. req-vec(n;x - y;t*y - z)
11. (r0 < d(x;y))
⇒ (r0 < t)
12. r0 < (r1 + t)
⊢ req-vec(n;y;(r1/r1 + t)*x + r1 - (r1/r1 + t)*z)
2
1. n : ℕ
2. x : ℝ^n
3. y : ℝ^n
4. z : ℝ^n
5. r0 < d(y;z)
6. ||x - y + y - z|| = (||x - y|| + ||y - z||)
7. ||x - z|| = ||x - y + y - z||
8. t : ℝ
9. r0 ≤ t
10. req-vec(n;x - y;t*y - z)
11. (r0 < d(x;y))
⇒ (r0 < t)
12. r0 < (r1 + t)
13. req-vec(n;y;(r1/r1 + t)*x + r1 - (r1/r1 + t)*z)
⊢ real-vec-be(n;x;y;z) ∧ ((r0 < d(x;y))
⇒ x-y-z)
Latex:
Latex:
1. n : \mBbbN{}
2. x : \mBbbR{}\^{}n
3. y : \mBbbR{}\^{}n
4. z : \mBbbR{}\^{}n
5. r0 < d(y;z)
6. ||x - y + y - z|| = (||x - y|| + ||y - z||)
7. ||x - z|| = ||x - y + y - z||
8. t : \mBbbR{}
9. r0 \mleq{} t
10. req-vec(n;x - y;t*y - z)
11. (r0 < d(x;y)) {}\mRightarrow{} (r0 < t)
\mvdash{} real-vec-be(n;x;y;z) \mwedge{} ((r0 < d(x;y)) {}\mRightarrow{} x-y-z)
By
Latex:
((Assert r0 < (r1 + t) BY
(RWO "-3<" 0 THEN Auto))
THEN Assert req-vec(n;y;(r1/r1 + t)*x + r1 - (r1/r1 + t)*z)\mcdot{}
)
Home
Index