Step
*
1
1
of Lemma
reals-connected
1. [A] : ℝ ⟶ ℙ
2. [B] : ℝ ⟶ ℙ
3. ∀x:ℝ. ∀y:{y:ℝ| x = y} . (A[y]
⇒ A[x])
4. ∀x:ℝ. ∀y:{y:ℝ| x = y} . (B[y]
⇒ B[x])
5. a : ℝ ⟶ 𝔹
6. b : ℝ ⟶ 𝔹
7. ∀x:ℝ. ((↑(a x))
⇒ A[x])
8. ∀x:ℝ. ((↑(b x))
⇒ B[x])
9. ∀x:ℝ. ((↑(a x)) ∨ (↑(b x)))
10. f : ℕ ⟶ ℝ
11. g : ℕ ⟶ ℝ
12. x : ℝ
13. ∀n:ℕ. (↑(a (f n)))
14. ∀n:ℕ. (↑(b (g n)))
15. lim n→∞.f n = x
16. lim n→∞.g n = x
⊢ ∃r:ℝ. (A[r] ∧ B[r])
BY
{ ((InstLemma `connectedness-main-lemma-ext` [⌜x⌝]⋅ THENA Auto)
THEN (Assert (↑(a accelerate(3;x))) ∨ (↑(b accelerate(3;x))) BY
Auto)
THEN (D -1 THENL [InstHyp [⌜g⌝;⌜a⌝] (-2)⋅; InstHyp [⌜f⌝;⌜b⌝] (-2)⋅])
THEN Auto
THEN ExRepD
THEN D 0 With ⌜z⌝
THEN Auto) }
1
1. [A] : ℝ ⟶ ℙ
2. [B] : ℝ ⟶ ℙ
3. ∀x:ℝ. ∀y:{y:ℝ| x = y} . (A[y]
⇒ A[x])
4. ∀x:ℝ. ∀y:{y:ℝ| x = y} . (B[y]
⇒ B[x])
5. a : ℝ ⟶ 𝔹
6. b : ℝ ⟶ 𝔹
7. ∀x:ℝ. ((↑(a x))
⇒ A[x])
8. ∀x:ℝ. ((↑(b x))
⇒ B[x])
9. ∀x:ℝ. ((↑(a x)) ∨ (↑(b x)))
10. f : ℕ ⟶ ℝ
11. g : ℕ ⟶ ℝ
12. x : ℝ
13. ∀n:ℕ. (↑(a (f n)))
14. ∀n:ℕ. (↑(b (g n)))
15. lim n→∞.f n = x
16. lim n→∞.g n = x
17. ∀g:ℕ ⟶ ℝ. (lim n→∞.g n = x
⇒ (∀P:ℝ ⟶ 𝔹. ∃z:{z:ℝ| P z = P accelerate(3;x)} . (∃n:{ℕ| (z = (g n))})))
18. ↑(a accelerate(3;x))
19. z : {z:ℝ| a z = a accelerate(3;x)}
20. n : ℕ
21. z = (g n)
22. A[z]
⊢ B[z]
2
1. [A] : ℝ ⟶ ℙ
2. [B] : ℝ ⟶ ℙ
3. ∀x:ℝ. ∀y:{y:ℝ| x = y} . (A[y]
⇒ A[x])
4. ∀x:ℝ. ∀y:{y:ℝ| x = y} . (B[y]
⇒ B[x])
5. a : ℝ ⟶ 𝔹
6. b : ℝ ⟶ 𝔹
7. ∀x:ℝ. ((↑(a x))
⇒ A[x])
8. ∀x:ℝ. ((↑(b x))
⇒ B[x])
9. ∀x:ℝ. ((↑(a x)) ∨ (↑(b x)))
10. f : ℕ ⟶ ℝ
11. g : ℕ ⟶ ℝ
12. x : ℝ
13. ∀n:ℕ. (↑(a (f n)))
14. ∀n:ℕ. (↑(b (g n)))
15. lim n→∞.f n = x
16. lim n→∞.g n = x
17. ∀g:ℕ ⟶ ℝ. (lim n→∞.g n = x
⇒ (∀P:ℝ ⟶ 𝔹. ∃z:{z:ℝ| P z = P accelerate(3;x)} . (∃n:{ℕ| (z = (g n))})))
18. ↑(b accelerate(3;x))
19. z : {z:ℝ| b z = b accelerate(3;x)}
20. n : ℕ
21. z = (f n)
⊢ A[z]
Latex:
Latex:
1. [A] : \mBbbR{} {}\mrightarrow{} \mBbbP{}
2. [B] : \mBbbR{} {}\mrightarrow{} \mBbbP{}
3. \mforall{}x:\mBbbR{}. \mforall{}y:\{y:\mBbbR{}| x = y\} . (A[y] {}\mRightarrow{} A[x])
4. \mforall{}x:\mBbbR{}. \mforall{}y:\{y:\mBbbR{}| x = y\} . (B[y] {}\mRightarrow{} B[x])
5. a : \mBbbR{} {}\mrightarrow{} \mBbbB{}
6. b : \mBbbR{} {}\mrightarrow{} \mBbbB{}
7. \mforall{}x:\mBbbR{}. ((\muparrow{}(a x)) {}\mRightarrow{} A[x])
8. \mforall{}x:\mBbbR{}. ((\muparrow{}(b x)) {}\mRightarrow{} B[x])
9. \mforall{}x:\mBbbR{}. ((\muparrow{}(a x)) \mvee{} (\muparrow{}(b x)))
10. f : \mBbbN{} {}\mrightarrow{} \mBbbR{}
11. g : \mBbbN{} {}\mrightarrow{} \mBbbR{}
12. x : \mBbbR{}
13. \mforall{}n:\mBbbN{}. (\muparrow{}(a (f n)))
14. \mforall{}n:\mBbbN{}. (\muparrow{}(b (g n)))
15. lim n\mrightarrow{}\minfty{}.f n = x
16. lim n\mrightarrow{}\minfty{}.g n = x
\mvdash{} \mexists{}r:\mBbbR{}. (A[r] \mwedge{} B[r])
By
Latex:
((InstLemma `connectedness-main-lemma-ext` [\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Assert (\muparrow{}(a accelerate(3;x))) \mvee{} (\muparrow{}(b accelerate(3;x))) BY
Auto)
THEN (D -1 THENL [InstHyp [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}] (-2)\mcdot{}; InstHyp [\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}] (-2)\mcdot{}])
THEN Auto
THEN ExRepD
THEN D 0 With \mkleeneopen{}z\mkleeneclose{}
THEN Auto)
Home
Index