Nuprl Lemma : reals-connected
Connected(ℝ)
Proof
Definitions occuring in Statement : 
connected: Connected(X)
, 
real: ℝ
Definitions unfolded in proof : 
prop: ℙ
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
sq_exists: ∃x:{A| B[x]}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
real: ℝ
, 
uimplies: b supposing a
, 
connected: Connected(X)
, 
false: False
, 
not: ¬A
, 
isl: isl(x)
, 
outl: outl(x)
, 
btrue: tt
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
isr: isr(x)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
Lemmas referenced : 
req_wf, 
bool_wf, 
exists_wf, 
or_wf, 
all_wf, 
real_wf, 
assert_wf, 
inhabited-covers-real-implies-ext, 
connectedness-main-lemma-ext, 
sq_stable__req, 
nat_wf, 
accelerate_wf, 
less_than_wf, 
subtype_rel_sets, 
nat_plus_wf, 
regular-int-seq_wf, 
real-regular, 
and_wf, 
equal_wf, 
isr_wf, 
isl_wf, 
btrue_neq_bfalse, 
bfalse_wf, 
assert_elim, 
true_wf, 
false_wf, 
assert_of_bnot, 
outr_wf, 
bool_subtype_base, 
subtype_base_sq, 
btrue_wf, 
squash_wf, 
assert_functionality_wrt_uiff
Rules used in proof : 
cut, 
universeEquality, 
cumulativity, 
rename, 
setElimination, 
setEquality, 
functionEquality, 
because_Cache, 
productElimination, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_functionElimination, 
unionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation, 
independent_pairFormation, 
productEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
intEquality, 
independent_isectElimination, 
hyp_replacement, 
equalitySymmetry, 
equalityTransitivity, 
applyLambdaEquality, 
instantiate, 
voidElimination, 
levelHypothesis, 
addLevel, 
unionEquality, 
inrEquality, 
voidEquality, 
inrFormation, 
inlFormation
Latex:
Connected(\mBbbR{})
Date html generated:
2017_10_03-AM-10_11_42
Last ObjectModification:
2017_09_13-PM-03_29_27
Theory : reals
Home
Index