Nuprl Lemma : reals-connected

Connected(ℝ)


Proof




Definitions occuring in Statement :  connected: Connected(X) real:
Definitions unfolded in proof :  prop: and: P ∧ Q exists: x:A. B[x] so_apply: x[s] member: t ∈ T so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q uall: [x:A]. B[x] or: P ∨ Q sq_exists: x:{A| B[x]} sq_stable: SqStable(P) squash: T cand: c∧ B subtype_rel: A ⊆B guard: {T} nat_plus: + less_than: a < b less_than': less_than'(a;b) true: True real: uimplies: supposing a connected: Connected(X) false: False not: ¬A isl: isl(x) outl: outl(x) btrue: tt bfalse: ff ifthenelse: if then else fi  assert: b isr: isr(x) rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) sq_type: SQType(T)
Lemmas referenced :  req_wf bool_wf exists_wf or_wf all_wf real_wf assert_wf inhabited-covers-real-implies-ext connectedness-main-lemma-ext sq_stable__req nat_wf accelerate_wf less_than_wf subtype_rel_sets nat_plus_wf regular-int-seq_wf real-regular and_wf equal_wf isr_wf isl_wf btrue_neq_bfalse bfalse_wf assert_elim true_wf false_wf assert_of_bnot outr_wf bool_subtype_base subtype_base_sq btrue_wf squash_wf assert_functionality_wrt_uiff
Rules used in proof :  cut universeEquality cumulativity rename setElimination setEquality functionEquality because_Cache productElimination independent_functionElimination hypothesis hypothesisEquality functionExtensionality applyEquality lambdaEquality sqequalRule thin isectElimination sqequalHypSubstitution extract_by_obid introduction lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_functionElimination unionElimination imageMemberEquality baseClosed imageElimination dependent_pairFormation independent_pairFormation productEquality dependent_set_memberEquality natural_numberEquality intEquality independent_isectElimination hyp_replacement equalitySymmetry equalityTransitivity applyLambdaEquality instantiate voidElimination levelHypothesis addLevel unionEquality inrEquality voidEquality inrFormation inlFormation

Latex:
Connected(\mBbbR{})



Date html generated: 2017_10_03-AM-10_11_42
Last ObjectModification: 2017_09_13-PM-03_29_27

Theory : reals


Home Index