Nuprl Lemma : outr_wf
∀[A,B:Type]. ∀[x:A + B].  outr(x) ∈ B supposing ↑¬bisl(x)
Proof
Definitions occuring in Statement : 
outr: outr(x)
, 
bnot: ¬bb
, 
assert: ↑b
, 
isl: isl(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
outr: outr(x)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
btrue: tt
, 
bfalse: ff
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
assert_wf, 
bnot_wf, 
isl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
unionElimination, 
thin, 
sqequalRule, 
sqequalHypSubstitution, 
voidElimination, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
isect_memberEquality, 
because_Cache, 
unionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[x:A  +  B].    outr(x)  \mmember{}  B  supposing  \muparrow{}\mneg{}\msubb{}isl(x)
Date html generated:
2016_05_13-PM-03_20_24
Last ObjectModification:
2015_12_26-AM-09_10_53
Theory : union
Home
Index