Nuprl Lemma : outr_wf

[A,B:Type]. ∀[x:A B].  outr(x) ∈ supposing ↑¬bisl(x)


Proof




Definitions occuring in Statement :  outr: outr(x) bnot: ¬bb assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a outr: outr(x) isl: isl(x) assert: b ifthenelse: if then else fi  bnot: ¬bb btrue: tt bfalse: ff false: False prop:
Lemmas referenced :  assert_wf bnot_wf isl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut unionElimination thin sqequalRule sqequalHypSubstitution voidElimination hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination isect_memberEquality because_Cache unionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[x:A  +  B].    outr(x)  \mmember{}  B  supposing  \muparrow{}\mneg{}\msubb{}isl(x)



Date html generated: 2016_05_13-PM-03_20_24
Last ObjectModification: 2015_12_26-AM-09_10_53

Theory : union


Home Index