Nuprl Lemma : inhabited-covers-real-implies-ext
∀[A,B:ℝ ⟶ ℙ].
  ((∃a:ℝ. A[a])
  
⇒ (∃b:ℝ. B[b])
  
⇒ (∀r:ℝ. (A[r] ∨ B[r]))
  
⇒ (∃f,g:ℕ ⟶ ℝ. ∃x:ℝ. ((∀n:ℕ. A[f n]) ∧ (∀n:ℕ. B[g n]) ∧ lim n→∞.f n = x ∧ lim n→∞.g n = x)))
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
spreadn: spread3, 
pi1: fst(t)
, 
top: Top
, 
inhabited-covers-real-implies, 
common-limit-midpoints, 
cover-seq-property-ext, 
canonical-bound-property, 
converges-iff-cauchy, 
sq-all-large-and, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
inhabited-covers-real-implies, 
istype-void, 
lifting-strict-callbyvalue, 
strict4-spread, 
cover-seq-0, 
common-limit-midpoints, 
cover-seq-property-ext, 
canonical-bound-property, 
converges-iff-cauchy, 
sq-all-large-and
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
voidElimination, 
isectElimination, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}a:\mBbbR{}.  A[a])
    {}\mRightarrow{}  (\mexists{}b:\mBbbR{}.  B[b])
    {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  (A[r]  \mvee{}  B[r]))
    {}\mRightarrow{}  (\mexists{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mexists{}x:\mBbbR{}.  ((\mforall{}n:\mBbbN{}.  A[f  n])  \mwedge{}  (\mforall{}n:\mBbbN{}.  B[g  n])  \mwedge{}  lim  n\mrightarrow{}\minfty{}.f  n  =  x  \mwedge{}  lim  n\mrightarrow{}\minfty{}.g  n  =  x)))
Date html generated:
2019_10_30-AM-07_19_19
Last ObjectModification:
2019_02_12-AM-11_16_40
Theory : reals
Home
Index