Nuprl Lemma : inhabited-covers-real-implies-ext

[A,B:ℝ ⟶ ℙ].
  ((∃a:ℝA[a])
   (∃b:ℝB[b])
   (∀r:ℝ(A[r] ∨ B[r]))
   (∃f,g:ℕ ⟶ ℝ. ∃x:ℝ((∀n:ℕA[f n]) ∧ (∀n:ℕB[g n]) ∧ lim n→∞.f x ∧ lim n→∞.g x)))


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T so_apply: x[s] so_lambda: λ2x.t[x] ifthenelse: if then else fi  subtract: m spreadn: spread3 pi1: fst(t) top: Top inhabited-covers-real-implies common-limit-midpoints cover-seq-property-ext canonical-bound-property converges-iff-cauchy sq-all-large-and uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  inhabited-covers-real-implies istype-void lifting-strict-callbyvalue strict4-spread cover-seq-0 common-limit-midpoints cover-seq-property-ext canonical-bound-property converges-iff-cauchy sq-all-large-and
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isect_memberEquality_alt voidElimination isectElimination baseClosed independent_isectElimination

Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}a:\mBbbR{}.  A[a])
    {}\mRightarrow{}  (\mexists{}b:\mBbbR{}.  B[b])
    {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  (A[r]  \mvee{}  B[r]))
    {}\mRightarrow{}  (\mexists{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mexists{}x:\mBbbR{}.  ((\mforall{}n:\mBbbN{}.  A[f  n])  \mwedge{}  (\mforall{}n:\mBbbN{}.  B[g  n])  \mwedge{}  lim  n\mrightarrow{}\minfty{}.f  n  =  x  \mwedge{}  lim  n\mrightarrow{}\minfty{}.g  n  =  x)))



Date html generated: 2019_10_30-AM-07_19_19
Last ObjectModification: 2019_02_12-AM-11_16_40

Theory : reals


Home Index