Nuprl Lemma : sq-all-large-and

[P,Q:ℕ ⟶ ℙ].  (∀large(n).{P[n]}  ∀large(n).{Q[n]}  ∀large(n).{P[n] ∧ Q[n]})


Proof




Definitions occuring in Statement :  sq-all-large: large(n).{P[n]} nat: uall: [x:A]. B[x] prop: so_apply: x[s] implies:  Q and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  sq-all-large: large(n).{P[n]} uall: [x:A]. B[x] implies:  Q sq_exists: x:A [B[x]] member: t ∈ T nat: all: x:A. B[x] guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q prop: cand: c∧ B uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  imax_wf imax_nat nat_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf le_wf imax_lb all_wf sq_exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution setElimination thin rename dependent_set_memberFormation dependent_set_memberEquality cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis equalityTransitivity equalitySymmetry applyLambdaEquality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination because_Cache productElimination functionEquality productEquality applyEquality functionExtensionality universeEquality cumulativity

Latex:
\mforall{}[P,Q:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].    (\mforall{}large(n).\{P[n]\}  {}\mRightarrow{}  \mforall{}large(n).\{Q[n]\}  {}\mRightarrow{}  \mforall{}large(n).\{P[n]  \mwedge{}  Q[n]\})



Date html generated: 2018_05_21-PM-07_59_51
Last ObjectModification: 2017_07_26-PM-05_36_43

Theory : general


Home Index