Nuprl Lemma : inhabited-covers-real-implies

[A,B:ℝ ⟶ ℙ].
  ((∃a:ℝA[a])
   (∃b:ℝB[b])
   (∀r:ℝ(A[r] ∨ B[r]))
   (∃f,g:ℕ ⟶ ℝ. ∃x:ℝ((∀n:ℕA[f n]) ∧ (∀n:ℕB[g n]) ∧ lim n→∞.f x ∧ lim n→∞.g x)))


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q or: P ∨ Q all: x:A. B[x] exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q subtype_rel: A ⊆B nat: ge: i ≥  decidable: Dec(P) uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True pi1: fst(t) pi2: snd(t) cand: c∧ B
Lemmas referenced :  all_wf real_wf or_wf exists_wf cover-seq-property-ext cover-seq_wf nat_wf equal_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf rdiv_wf radd_wf int-to-real_wf rless-int rless_wf common-limit-midpoints pi1_wf_top pi2_wf req_witness req_wf req_weakening squash_wf true_wf top_wf subtype_rel_product iff_weakening_equal converges-to_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename sqequalHypSubstitution sqequalRule productElimination thin cut introduction extract_by_obid isectElimination hypothesis lambdaEquality applyEquality functionExtensionality hypothesisEquality functionEquality cumulativity universeEquality dependent_functionElimination independent_functionElimination dependent_pairFormation productEquality because_Cache equalityTransitivity equalitySymmetry dependent_set_memberEquality addEquality setElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation independent_pairEquality inrFormation imageMemberEquality baseClosed inlFormation imageElimination

Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}a:\mBbbR{}.  A[a])
    {}\mRightarrow{}  (\mexists{}b:\mBbbR{}.  B[b])
    {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  (A[r]  \mvee{}  B[r]))
    {}\mRightarrow{}  (\mexists{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mexists{}x:\mBbbR{}.  ((\mforall{}n:\mBbbN{}.  A[f  n])  \mwedge{}  (\mforall{}n:\mBbbN{}.  B[g  n])  \mwedge{}  lim  n\mrightarrow{}\minfty{}.f  n  =  x  \mwedge{}  lim  n\mrightarrow{}\minfty{}.g  n  =  x)))



Date html generated: 2017_10_03-AM-10_04_16
Last ObjectModification: 2017_07_06-AM-11_21_57

Theory : reals


Home Index