Nuprl Lemma : inhabited-covers-real-implies
∀[A,B:ℝ ⟶ ℙ].
  ((∃a:ℝ. A[a])
  
⇒ (∃b:ℝ. B[b])
  
⇒ (∀r:ℝ. (A[r] ∨ B[r]))
  
⇒ (∃f,g:ℕ ⟶ ℝ. ∃x:ℝ. ((∀n:ℕ. A[f n]) ∧ (∀n:ℕ. B[g n]) ∧ lim n→∞.f n = x ∧ lim n→∞.g n = x)))
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
rneq: x ≠ y
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cand: A c∧ B
Lemmas referenced : 
all_wf, 
real_wf, 
or_wf, 
exists_wf, 
cover-seq-property-ext, 
cover-seq_wf, 
nat_wf, 
equal_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
rdiv_wf, 
radd_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
common-limit-midpoints, 
pi1_wf_top, 
pi2_wf, 
req_witness, 
req_wf, 
req_weakening, 
squash_wf, 
true_wf, 
top_wf, 
subtype_rel_product, 
iff_weakening_equal, 
converges-to_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
rename, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
productEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
independent_pairEquality, 
inrFormation, 
imageMemberEquality, 
baseClosed, 
inlFormation, 
imageElimination
Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}a:\mBbbR{}.  A[a])
    {}\mRightarrow{}  (\mexists{}b:\mBbbR{}.  B[b])
    {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  (A[r]  \mvee{}  B[r]))
    {}\mRightarrow{}  (\mexists{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mexists{}x:\mBbbR{}.  ((\mforall{}n:\mBbbN{}.  A[f  n])  \mwedge{}  (\mforall{}n:\mBbbN{}.  B[g  n])  \mwedge{}  lim  n\mrightarrow{}\minfty{}.f  n  =  x  \mwedge{}  lim  n\mrightarrow{}\minfty{}.g  n  =  x)))
Date html generated:
2017_10_03-AM-10_04_16
Last ObjectModification:
2017_07_06-AM-11_21_57
Theory : reals
Home
Index